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Deep Learning Inference Service (DLIS) prospers.
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Deep Learning Inference Service (DLIS) 

Virtual Agents

Medical Diagnosis

Cyber Defense

Marketing Automation

Self Driving

Processes Automation

prospers.
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DLIS
Text Audio Video Image

Abusable!!!

Data abuse issue

Data abuse is about the rights of data owners in the context of DLIS.

1.Infer private info.


2.Train new models.
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Honest Provider: 

Attract more customers


Reduce potential risks of 
violating laws (GDPR, CCPA)
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DLIS
Text Audio Video Image

U2. No Changes

U1. Maintain Accuracy

U3. Efficient

User Data Results

S1. Not visually recognizable 

S2. Only retain necessary features

S3. Can’t be reversed

BalanceSecurity Usability
Weak security solution


DP, MP, PAN

Low usability solution

TEE, FHE

Honest Provider: 

Attract more customers


Reduce potential risks of 
violating laws (GDPR, CCPA)
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DLIS

DAPter
A lightweight DLIS-input converter at the end user side. 
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DLIS

DAPter
A lightweight DLIS-input converter at the end user side. 
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DAPter Use Case
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Results

DLIS

User Data

Before Protection

Abusable

A lightweight DLIS-
input converter at the 
end user side. 

User Data

DAPter

DLIS

Results

After Protection

Abuse-prevented
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A user-side entropy reduction approach to prune information not relevant to the target DLIS in user data.
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A user-side entropy reduction approach to prune information not relevant to the target DLIS in user data.

Original image DAPter Converted image

User Side

Deploy

Tr
ai

ni
ng

Existing DLIS

Dataset

DAPter Public-accessible Repo
R

el
ea

se

Verify

DAPter

Open-Source Community, NGO, White Hat

 Converted data 

DLIS

Model in training

Results

S1. Not visually recognizable

S2. Only retain necessary features

S3. Can’t be reversed

U2. No Changes

U1. Maintain Accuracy

U3. Efficient

Key Design1. A lightweight generative model

2. A data abuse prevention loss
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For balance

Ldap = λ * Lη + (1 - λ) * Lacc, λ ∈ (0, 1)
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Training Structure & Model Architecture 
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Original Image

Ground Truth 

(e.g., male)

DAPter

Converted Image Target DLIS 

(e.g., gender inference)

(Frozen)

Result

(e.g., male)

Lη
Lacc

Inference accuracy loss

Entropy reduction loss

Ldap

For balance

Model Architecture

1. A symmetrical U-Net like architecture.


2. Input and output are of the same size.


3. “Copy” connection captures the high-level 
semantic info and low-level spatial info.

Ldap = λ * Lη + (1 - λ) * Lacc, λ ∈ (0, 1)
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Minimize the piece of pixel-wise entroy that contributes little to the high-level features.

Ldap = λ * Lη + (1 - λ) * Lacc, λ ∈ (0, 1)
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image’s pixel-wise entropy can be reduced.
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Minimize the piece of pixel-wise entroy that contributes little to the high-level features.

Lacc measures the inference accuracy of the target DLIS.

Lη measures the pixel-wise entropy                                                 in input data.       is the occurrence possiblility of i.(HI = − ∑
i

pi log pi) pi

*Proof can be found in our paper

Support statement*. By enlarging the occurrence possibility of a specific pixel value, the upper bound of an 

image’s pixel-wise entropy can be reduced.

Lη = ∑
I

η(I, Iref)

η is L1 norm; I is the converted image; Iref is the reference image with each pixel equaling to (R128, G128, B128).

Ldap = λ * Lη + (1 - λ) * Lacc, λ ∈ (0, 1)
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A larger λ lets DAPter remove more entropy but leads to a low DLIS accuracy.

Ldap = λ * Lη + (1 - λ) * Lacc, λ ∈ (0, 1)
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A larger λ lets DAPter remove more entropy but leads to a low DLIS accuracy.
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A larger λ lets DAPter remove more entropy but leads to a low DLIS accuracy.
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λ = 0.9 is a sweet point to balance security and usability.

Ldap = λ * Lη + (1 - λ) * Lacc, λ ∈ (0, 1)
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To show that DAPter can remove the unnecessary features and retain the useful features, 

we generate saliency map (SM) to measure which part of the input supports the DLIS through Grad-CAM.
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Conversion Quality
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To show that DAPter can remove the unnecessary features and retain the useful features, 

we generate saliency map (SM) to measure which part of the input supports the DLIS through Grad-CAM.

(a) Arched Eyebrow Inference (b) Wearing Glasses Inference

(c) Gender Inference

Results are visualize below. From left to right is original image, sm of DLIS, protected image, sm of DAPter-enabled DLIS. 
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The adversary can use SOTA DL model to label the entropy-reduced outputs of DAPter.
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Ground Truth 

(e.g., black hair)

Converted Image
Adv. Model 


(e.g., hair color inference)

Result

(e.g., unknown)

Attack Accuracy

DAPter

(e.g., trained for 

gender inference)
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The adversary can use SOTA DL model to label the entropy-reduced outputs of DAPter.
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Case 1: Attack tasks have no correlation with the targeted task. Case 2: Attack tasks have correlations with the targeted task.
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The adversary can use SOTA DL model to reconstruct the origianl image from the protected one.

Original Image Converted Image Adv. Model 

(Generative model)

Attack Accuracy

DAPter

(e.g., trained for arched 

eyebrows inference)

Security - Image Reconstruction Attack

Recovered Image
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The adversary can use SOTA DL model to reconstruct the origianl image from the protected one.

Original Image Converted Image Adv. Model 

(Generative model)

Attack Accuracy

DAPter

(e.g., trained for arched 

eyebrows inference)

Security - Image Reconstruction Attack

Recovered Image

(a) Chubby Inference Task (b) Wearing Glasses Inference Task (c) Wearing Lipstick Inference Task
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Usability Evaluatuion
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Backend Throughput:


Compare to TEE-based solution: 2.5x~50x,  


Compare to FHE-based solution: 1000x.


Bandwidth Usage:


2.1x~41x better (measured with LFW, ImageNet, CelebA, Cifar10).


Latency Overhead:


109ms (Snapdragon 855 Plus), 292ms (Kirin 960), and 309ms (Helio X30).


No DLIS backend change is needed!!!

User Data
DAPter

DLIS

Results

A lightweight 
user-side add-on. 
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User Data
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Results
A lightweight 
user-side add-on. 

First investigate the data abuse issue in the scenario of DLIS.
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A user-side entropy reduction approach to prevent data abuse in DLIS context.
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A user-side entropy reduction approach to prevent data abuse in DLIS context.

User Data
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DLIS

ResultsS1. Not visually recognizable

S2. Only retain necessary features

S3. Can’t be reversed

U1. Maintain Accuracy

U2. No Changes

U3. Efficient

BalanceSecurity Usability

A lightweight 
user-side add-on. 

First investigate the data abuse issue in the scenario of DLIS.
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A user-side entropy reduction approach to prevent data abuse in DLIS context.

Thank you for attention!

User Data
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U1. Maintain Accuracy

U2. No Changes

U3. Efficient

BalanceSecurity Usability

A lightweight 
user-side add-on. 

First investigate the data abuse issue in the scenario of DLIS.


