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ABSTRACT
The data abuse issue has risen along with the widespread devel-

opment of the deep learning inference service (DLIS). Specifically,

mobile users worry about their input data being labeled to secretly

train new deep learning models that are unrelated to the DLIS they

subscribe to. This unique issue, unlike the privacy problem, is about

the rights of data owners in the context of deep learning. However,

preventing data abuse is demanding when considering the usability

and generality in the mobile scenario. In this work, we propose,

to our best knowledge, the first data abuse prevention mechanism

called DAPter. DAPter is a user-side DLIS-input converter, which

removes unnecessary information with respect to the targeted DLIS.

The converted input data by DAPter maintains good inference ac-

curacy and is difficult to be labeled manually or automatically for

the new model training. DAPter’s conversion is empowered by our

lightweight generative model trained with a novel loss function

to minimize abusable information in the input data. Furthermore,

adapting DAPter requires no change in the existing DLIS back-

end and models. We conduct comprehensive experiments with our

DAPter prototype on mobile devices and demonstrate that DAPter

can substantially raise the bar of the data abuse difficulty with little

impact on the service quality and overhead.

CCS CONCEPTS
• Security andprivacy→ Security services; •Computingmethod-
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Figure 1: (a) A typical DLIS scenario and the data abuse risk users

face. (b) Desired abuse prevention mechanism for DLIS. (c) Sample

pairs of original DLIS inputs and their abuse-prevented versions

generated by our DAPter.

1 INTRODUCTION
Deep Learning Inference Service (DLIS) [28] lately gains a lot of

popularity amongmobile end users. It delivers the power of artificial

intelligence (AI) to resource-limited devices by offloading expensive

computations to the cloud (Figure 1(a)). For example, a mobile end

user can enjoy with the support of DLIS the same sophisticated

face detection model as the one used on a powerful GPU. Leading

web service providers, such as Microsoft, Google, Amazon, and

Face++, have achieved great business successes with the DLISes

launched for their customers. We envision that the market of DLIS

will continue growing at a fast pace, provided that more and more

new models are being trained [4].

However, a unique issue has been raised with the rapid develop-

ment of DLIS. In the context of deep learning (DL), real-world data

are always precious assets because they are the key ingredient in

training new DL models. Thus, greedy web service providers may

collect and exploit the inputs of their DLISes, which are excellent

sources of real-world data, to train new models under the table. In

fact, some of such providers have already been caught because they

explicitly ask users to give up all rights of their input data in the

service agreement [2, 5]. End users have been worried about this

issue of data abuse - whether their inputs will be stealthily exploited
to train other models unrelated to the DLIS they subscribe.
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The data abuse issue in DLIS is different from existing security

problems related to privacy. What end users desire is not to remove

beforehand all sensitive information in their inputs. Some sensitive

information is even commonly used in DLISes, such as facial infor-

mation and vehicle license plates. However, end users do not want

web service providers to freely (at no cost or consensus) utilize

their data, no matter whether these data are sensitive or not, in a

way they do not pay for (Figure 1(b)). For example, it is unfair to

users if their input photos to a paid DLIS of emotion recognition are

stealthily collected and labeled to train a gender prediction model,

which will be launched as another new paid DLIS. Therefore, this

data abuse issue is about the rights of data owners in the web ser-

vice environment, which is also a key focus of recent regulations

like GDPR [31].

In this work, we aim to address the data abuse issue from the

perspective of benign web service providers. Those providers are

willing to deploy some data abuse prevention for their DLISes

because of two great benefits. First, the promotion of this prevention

feature is able to make their businesses stand out and thus attract

more customers who are afraid of being taken advantage of. Second,

enabling this prevention feature can also help reduce potential risks

of violating existing and future data regulations and antitrust laws.

We hope such data abuse prevention could be part of a standard

code of practice in DLIS for strengthening the trust between benign

providers and their users.

Our solution DAPter is a lightweight DLIS-input converter at the
end user side. DAPter is built by the web service provider for a DLIS
and provided as an add-on to their App on mobile devices. Adapting

DAPter requires no change in the cloud backend and has little
impact on the online service quality and latency. When deployed,

DAPter effectively and efficiently converts original DLIS inputs

into their abuse-prevented versions (Figure 1(c)) before sending

them to the cloud backend. The new abuse-prevented inputs are

able to maintain the similar inference accuracy of their original

counterparts, given the same unchanged DLIS model.

DAPter’s conversion prevents data abuse by rendering the DLIS

inputs unrecognizable to human beings and AI, so that these real-

world data cannot be labeled manually or automatically for the new

training
1
[3]. In this work, we take an entropy reduction approach

to realize such conversion. It is transparent to existing services

and suitable in mobile scenarios, compared to other potential ap-

proaches. Comparison details are given in Section 8.

The entropy reduction in DAPter is empowered by our gener-

ative model tailored for the considered scenario. This generative

model is lightweight enough to run on mobile devices in real time.

Its neural structure is independent of the model used in its targeted

DLIS, so DAPter can be released to the public for verification or

distribution without worrying about the intellectual property of

services. We also introduce a novel loss function, the data abuse
prevention loss, to train our model on how to convert images into de-

sired abuse-prevented ones. The objective of this loss is to discover

the entropy that contributes little to the high-level features used

in the targeted DLIS model, and eliminate it to the extent where

1
This work focuses on the supervised learning which requires labeled data. Most

models in DLIS so far belong to this category. However, our design is general and

could be effective in the weakly-supervised and unsupervised learning scenarios.

conversion outcomes are satisfied. Please note that our training

does not update the targeted DLIS model.

We conduct thorough evaluations on our DAPter prototype im-

plemented on the resource-limited devices, including the Snap-

dragon 855 Plus, Kirin 960, and Helio X30. Experimental results

show that, given our practical security model, DAPter is effective

in preventing its outputs from being labeled or restored back via

possible attacks. Compared to original images, DAPter’s abuse-

prevented images only downgrade the inference accuracy within

3% and introduce an extra service latency of 109ms ∼ 309ms . Ad-
ditionally, the network bandwidth usage of DAPter is 2.1× ∼ 41×

more efficient than that of the original DLISes.

In a nutshell, we attempt to realize the principle of least privilege
(PoLP) in the context of emerging DLIS. As an initial research effort,

DAPter exploits mobile deep learning to prune unnecessary infor-

mation in input data, which is one of the feasible approaches. We

hope our work could attract more research efforts in solving this

data abuse issue, or more broadly, the data-right problems in the

DL scenarios. The contributions of our work are summarized as

follows:

• We investigate the data abuse issue in the scenario of DLIS

and propose an entropy reduction solution to address it in

a lightweight and intelligent way. Adapting our solution

can significantly raise the bar of abusing user data, with

minimal influence on existing DLISes. We also leverage the

open verification from our community to strengthen the

trust between honest providers and their users.

• Wedesign a new generativemodel with a loss function specif-

ically for the considered scenario, empowering our abuse

prevention solution. The DAPter model can convert images

into their abuse-prevented versions, and its overhead is small

on mobile devices. Proposed loss can train this model to well

balance the abuse prevention effectiveness and inference ser-

vice accuracy. No updates are required on the DLIS model.

• We implement our DAPter prototype on representative mo-

bile hardware and evaluate it with comprehensive experi-

ments.We demonstrate that DAPter is effective in preventing

data abuse against different possible attacks under our prac-

tical security model, and it is efficient in terms of resource

consumption, execution time, and deployment effort.

2 PROBLEM OVERVIEW
We consider a popular DLIS scenario, where image data are taken

as inputs. As illustrated in Figure 1(a), a DLIS subscriber submits

her images via a mobile App to the corresponding cloud backend

and receives the inference results back in real time. Subscribers

(i.e., users) want their data to be only used in their paid service and

for their best interests. More concretely, they feel taken advantage

of if their data may be secretly utilized in training new DLIS mod-

els. Meanwhile, an honest web service provider is also willing to

demonstrate their DLISes are free of data abuse risks.

Security Model. There are two types of providers, greedy and

honest. A greedy provider, although not malicious, would like to

abuse the user data of his DLIS for his own interests. He labels

these data and uses them in the training of a new DLIS model. On
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the other hand, an honest provider seeks to grow her business via

the trust building with users. She would like to prove that all data

collected in her DLIS will not be secretly exploited, complying with

the data regulations and laws.

We want to help the honest provider to achieve their goal. Our

security goal (S) is to greatly reduce the possibility that the data

sent by users are able to be labeled. It consists of three sub-goals:

(S1) data should not be visually recognizable; (S2) data should

only retain features necessary to subscribed DLIS; (S3) the security
applied on data can not be reversed.

We assume that a piece of code can be trusted as long as it is

released to the public, e.g., putting the code with full documentation

in a public-accessible git repo. It is because, in our community, there

are many good volunteers and organizations offering help with

the code function verification, such as the white-hats, NGOs, App

stores, and law enforcement authorities. This is the same reason

why open source is generally considered more secure than closed

source. Without loss of generality, we also assume that a DLIS

subscribed by a user only contains one DLIS model, although our

prevention can support a DLIS to have multiple models.

Objective & Challenge. We would like to introduce, only at the

user side, a PoLP solution that can meet our security goal above.

Our solution can run on the mobile device as part of the DLIS App.

Before data are uploaded to the provider, they are processed by

the solution so that only necessary information is retained, i.e.,

eliminating the chance of data abuse at the provider side.

The key challenge in design is to strike a good balance between

security and usability. DLIS subscribers are sensitive to service qual-

ity and latency, while their mobile devices have limited resources.

Moreover, the provider is sensitive to the deployment cost and

the convenience of adopting our solution. Therefore, besides secu-

rity, we want to achieve three sub-goals of high usability (U): (U1)
good inference accuracy is maintained for DLIS; (U2) there is no
change in the backend, including the model and architecture; (U3)
execution time on mobile devices is suitable for online services.

Existing Solutions.We investigate several existing data security

solutions and find that they all have deficiencies in serving our

design goals. The fully homomorphic encryption (FHE) [7, 10, 12]

offers the full-fledged confidential computation, which is able to

cover our security needs, but its heavy overhead is not affordable

in the DLIS scenario. Although the trusted execution environment

(TEE) [14, 29, 30] can provide an efficient environment for secure

computing, it requires special hardware (the SGX-enabled CPU)

and suffers the side-channel attacks. The DL model partitioning

(MP) [19, 23] offloads the front portion of a model onto the device so

that only high-level features are sent to the backend. However, an

adversary could reconstruct the original data from these features,

and the provider also has to give up the offloaded model part as

their intellectual property. Last, the differential privacy (DP) [32]

requires adding the high-intensity noise on inputs, hurting the

inference accuracy a lot [21]. In fact, the applicability of DP in our

considered scenario is questionable due to the problem formulation

difficulty. Please refer to Section 8 for detailed explanations and

comparisons.

3 DAPTER DESIGN
In this section, we introduce our data abuse prevention solution,

DAPter, which is a lightweight DLIS-input converter at the end

user side. We show both the high-level design intuition and over-

all design description. Details of the proposed loss function are

explained in the next section.

3.1 High-level Design
Our strategy for realizing PoLP is to minimize unnecessary pixel-

wise entropy in images before giving them to the provider. We

consider a piece of pixel-wise entropy unnecessary if it contributes

little to the high-level features used in the targeted DLIS. We select

the pixel-wise entropy to manipulate because it is a generic feature

working for various image-input DLISes. As a low-level feature, the

pixel-wise entropy is also much easier to compute than high-level

ones.

The key step in our strategy is identifying the pixel-wise entropy

unnecessary to a DLIS. We leverage the local linearity of neural

structures [15] to assess the importance of each pixel in the image

with respect to the targeted DLIS. More concretely, we introduce

an entropy-oriented loss function to train a lite neural network,

which can capture the sophisticated relationship between pixel-

wise entropy and high-level features.

Our lite neural network is a generative model. Given an image

input, it generates an image output, which only retains the pixel

information closely related to the high-level DLIS features. The

neural structure of our model is generic and independent of various

DLIS models. Moreover, trained weights of our model do not leak,

by design, any information regarding what the high-level features

are in the targeted DLIS. Thus, it can be released to the public for

purposes like open verification.

DAPter by design need to be trained for each targeted DLIS

model. Different DLIS models rely on different features to perform

the inference. The information unnecessary to one model could

be critical to another model. Thus, the abuse prevention cannot be

one-size-fits-all due to the DLIS task variety. However, this training,

as part of the one-time DAPter initialization, only takes several

hours, according to our empirical study. Given that a DLIS could

last for years, this training cost can be amortized and is acceptable.

3.2 Overall Description
DAPter is an intelligent software running on the DLIS subscriber’s

mobile device. It could be deployed as a standalone App or part of

the existing DLIS App.We show the workflow of DAPter in Figure 2.

Whether a subscriber deploys DAPter or not has no influence on

other subscribers and the corresponding cloud backend. DAPter’s

core component is the lightweight generative model trained with a

novel loss. The trained model can remove irrelevant information in

raw RGB images according to the targeted DLIS, while maintaining

excellent QoS like the inference accuracy and latency. DAPter en-

sures that the provider cannot label the processed images or restore

them back to original forms.

3.2.1 Generative Model. Our generative model is tailored from the

U-Net [24]. It keeps the U-Net’s skip connections, but the channel

number and convolution layers are modified in the architecture
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Figure 2: The DAPter workflow.

Figure 3: The neural network architecture of DAPter’s converter.

Assume the input image size is 224 × 224px.

because our goal is to remove unnecessary semantics rather than

keeping them. We present the architecture of DAPter’s converter in

Figure 3. The converter adopts a symmetrical architecture with the

down-sampling and up-sampling modules. This symmetry ensures

that the outputs of DAPter are the same size and format as the

inputs so that there is no change in the targeted DLIS model. We

use a copy connection to forward the output features of the 3rd

layer and concatenate them with the input features of the 8th layer.

This feature fusion through this "shortcut" can help DAPter well

capture the high-level semantic information and low-level spatial

information of input data, which is important to the information

reduction. Our structure only has eight convolution layers, which

is lightweight. When running on the mobile device, our model only

adds about 109ms ∼ 309ms to the end-to-end service latency of a

DLIS.

Our model design allows DAPter instances targeted at different

DLISes to share the same neural network design, which is DLIS-

agnostic. This is beneficial because we could leverage the transfer-

ring learning technique [22] to speed up the training. Moreover,

our models leak no information about the targeted DLIS model

architecture, which is the intellectual property of the web service

provider.

Before deployment, our generative model is trained with the

targeted DLIS model and, more importantly, our data abuse preven-

tion loss Ldap (Equation 1). This loss guides our model in training

to learn an effective and efficient way to remove abusable informa-

tion directly at the pixel level of RGB images, with respect to the

targeted DLIS model accuracy. We describe our training procedure

below and introduce the data abuse prevention loss in the following

section (Section 4).

3.2.2 Training & Deployment. The training architecture is shown
in Figure 4. The entropy reduction loss, Lη , is proposed to measure

the entropy residual in the converted image (Section 4.1). Minimiz-

ing Lη is able to reduce the abusable information available to the

Figure 4: DAPter training Phase.

backend. Moreover, the converted image is also evaluated in terms

of the inference accuracy of the targeted DLIS model. Thus, we

introduce the inference accuracy loss Lacc (Section 4.2). These two

loss functions are applied in an adversarial manner and together

form our new loss function called the data abuse prevention loss.

Please note that the targeted DLIS has already been trained

by the provider beforehand, and it is fixed during the training of

DAPter. At the end of the training, we obtain a DAPter model,

which can convert images in a way totally compatible with the

original input and QoS needs of the target DLIS. In the meanwhile,

converted images can hardly be labeled and exploited to train new

DLIS models.

The trained DAPter for its targeted DLIS, together with the nec-

essary running code (both in source and executable formats) at the

user side, is released to the public, e.g., in a public-accessible repo.

All parts of this release are free to be inspected, verified, tested,

and assessed by any party, such as the white-hats, NGOs, App

stores, and other law enforcement authorities. As mentioned in our

threat model, we assume the model and code, after releasing, are

benign because any malicious behavior will be detected eventually.

We share the same philosophy as the open-source community -

the open-source is relatively secure and trustworthy. Therefore, a

user can trust, download, and install the DAPter released for her

subscribed DLIS.

Additionally, it is also possible to introduce a trusted third-party

to train and endorse DAPter for its targeted DLIS. However, a proper

training and releasing procedure is required. We will investigate

this deployment manner in the future.

4 DATA ABUSE PREVENTION LOSS
We formulate our data abuse prevention loss function Ldap as

Ldap = λ ∗ Lη + (1 − λ) ∗ Lacc (1)

where Lη is the entropy reduction loss, Lacc is the inference accu-
racy loss, and λ is a weighting hyperparameter between 0 and 1. Lη
is designed to reduce the pixel-wise entropy retained in the DAPter

output, while Lacc is designed to maintain the inference accuracy
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when the DAPter output is taken as input in the targeted DLIS. Min-

imizing Ldap is the learning objective in the DAPter model training

for a DLIS. Details of Lη and Lacc are presented below.

4.1 Entropy Reduction Loss Lη
A key step in designing Lη is to measure the pixel-wise entropy

in an image. A well-known definition is the image entropy [16],

which can quantify the overall pixel-wise information contained in

the image. Given a gray-scale image I , it is defined as

HI = −

255∑
i=0

pi logpi

i is a possible pixel value ranging from 0 to 255. pi is the occurrence

possibility of i in I - pi =
fi
N , where fi is the number of observed

i-value pixels in the total N pixels of I . When the image has RGB

channels, its entropy is computed as the sum of the entropy of each

channel.

However, such pixel-wise entropy calculation is not a trainable

metric in terms of the loss function design of DL. Such calculation

is a counting process, which is discrete. It cannot be optimized (min-

imized in our case) by the backpropagation procedure of DL, which

computes gradient descents. Therefore, we propose a DL-oriented

alternative to replace the image entropy metric as the training loss.

Minimizing our loss, i.e., Lη , is equivalent to minimizing the image

entropy.

Before introducing the newmetric Lη , we first make a supporting

statement with our analysis.

Statement 1. By enlarging the occurrence possibility of a specific
pixel value, the upper bound of the image entropy of an image can be
reduced.

Analysis . We assume the occurrence frequency of a specific

pixel value j in the image I is known. Then the image entropy can

be rewritten as

HI = −pj logpj −
∑

i ∈{0∼255}\{j }

pi logpi = Hj + H∼j

The max value of H∼j will be reached if all pixel values except j
has the same occurrence frequency, i.e.,

H∼j ≤ 255 ∗

(
−
1 − pj

255

log

1 − pj

255

)
So the upper bound of HI is

maxHI = −pj logpj −
(
1 − pj

)
log

1 − pj

255

Therefore, we have

dmaxHI
dpj

= log

1 − pj

pj
− log 255

It is obvious that
dmaxHI

dpj
< 0 when pj >

1

256
. So the larger pj is

than
1

256
, the smaller the upper bound of the image entropy will be.

The statement is proved. □

Therefore, according to the above supporting statement, we

design an entropy metric η of an image I as

η(I , Iref) = |I − Iref |1 (2)

Figure 5: Training architecture of the auto recognition attack,

which is reinforced via transfer learning training.

where Iref is a fixed reference image in which all pixels have the

same value, and | � |1 is the L1 norm operator.

Here we prefer L1 norm to L2 norm, which is commonly seen

as the distance metric, because of the following reasons. When

optimized with L1 norm, the outcome is close to the reference

target, and some pixels of the outcome are exactly the same as

the reference image. L2 norm can make that every pixel is close

to the reference image, but probably none of them is exactly the

same. Making every image containing similar pixels is critical to

DAPter as it means less abusable information is retained in the

image, according to our supporting statement. Thus, we use L1 in
η.

Finally, we define our entropy reduction loss Lη as

Lη =
∑
I
η(Î , I128) (3)

where Î is the converted image output of an image input I , and I128 is
the reference image with each pixel equaling to (R128,G128,B128).
Considering that the performance of the neural network is sensitive

to the input distribution, we choose the I128 to minimize the mean

value of the pixel values and the entropy.

4.2 Inference Accuracy Loss Lacc
For the sake of simplicity, we adopt the widely-used training loss,

the cross entropy as our Lacc:

Lacc = −
∑
i

labeli log(probi ) (4)

where probi is the inferred probability of class i (the i-th element of

SoftMax output vector of the targeted DL model) for Image I , and
labeli is the i-th element of the ground-truth vector whose element

corresponding to the ground-truth category of Image I is 1 and rest
elements are 0.

5 CONSIDERED ATTACKS
Given our security model, we consider three types of possible at-

tacks against the effectiveness of DAPter. They are auto recognition

attack, visual recognition attack, and image reconstruction attack,

corresponding to our security requirements. The attack goal of

the first two is to directly label abuse-prevented images for new

pieces of training. The attack goal of the last one is to restore those

images back to original forms and then label them. We introduce

these three attacks here and use them in the evaluation of DAPter

(Section 7.3).

5.1 Auto Recognition Attack
The AI, specifically the DL, has been leveraged to automatically

label data. It often outperforms the human worker in cases like the

1021



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Hao Wu, Xuejin Tian, Yuhang Gong, Xing Su, Minghao Li, and Fengyuan Xu

Figure 6: The diagrammatic sketch of the visual recognition attack.

Figure 7: Training architecture of image reconstruction attack. The

reconstruction model is a generative model to perform the recovery

task.

incomplete data and the blurred data. The adversary can leverage

this excellent recognition ability of the DL to label the entropy-

reduced outputs of DAPter.We also allow the adversary to reinforce

the recognition on DAPter’s outputs via transfer learning training.

The training procedure is shown in Figure 5. The training loss

Lattack is the cross-entropy loss (Equation 4) with a regularization

part. The training data is prepared in the following way.

The adversary obtains the DAPter corresponding to the targeted

DLIS, e.g., the inference of attribute A, from the public repo. He also

manually labels a small set of his data with desired ground-truth,

e.g., the attribute B. Then, he feeds the data to DAPter to get the

abuse-prevented outputs. These outputs with the ground-truth of

attribute B are the training data in the transfer learning so that a DL

model originally working on normal images can then be fine-tuned

to recognize the attribute B in abuse-prevented images.

After the DL model is trained with the transfer learning against

DAPter, the adversary will utilize this model to automatically label

a lot of abuse-prevented images used in the targeted DLIS (i.e.,

attribute A inference). The large volume of auto-labeled images is

used to train a new DLIS model related to attribute B.

5.2 Visual Recognition Attack
What DAPter generates is still the RGB image, although the entropy

in it is reduced. Therefore, the adversary can also find human work-

ers and spend a lot of labor hours to manually label a large amount

of data (i.e., the abuse-prevented images) needed in the new DLIS

model training. To conduct this attack in our evaluation, we invite

volunteers to perform the data labeling work on DAPter’s outputs.

For example, ask them to label glasses type in abuse-prevented

images received by a DLIS inferring the person’s age. The attack

method is presented in Figure 6.

5.3 Image Reconstruction Attack
As an advanced approach, the adversary can first reconstruct the

original image from the abuse-prevented one and then label them

manually or automatically. The reconstruction is performed by a

generative model trained against DAPter. The training procedure

of this attack is shown in Figure 7. This reconstruction model is

Table 1:Hardware platforms used in the prototype implementation.

Platform CPU RAM OS

Snapdragon

855 Plus

1× 2.96GHz Kryo 485 Gold

8GB Android 93× 2.42GHz Kryo 485 Gold

4× 1.80GHz Kryo 485 Silver

Kirin 960

4× 2.40GHz A73

6GB Android 9

4× 1.80GHz A53

Helio X30

2× 2.60GHz A73

4GB Android 94× 2.20GHz A53

4× 1.90GHz A35

Table 2: The model type of the DLIS models used in experiments.

Model Name Structure Info

LeNet [18] A classical convolutional neural network. It consists of

two convolution layers and two fully connected layers.

VGG [27]

The first attempt at the depth of CNN. We adopt the

VGG11, which has 8 convolutional layers with 3 fully

connected layers, and VGG16, which has 5 more

convolutional layers, in the following experiments.

ResNet [11]

A widely-used DL model, which is remarkable in

many tasks. We adopt the ResNet18 (18 convolutional
layers) and ResNet50 (50 convolutional layers)

in the following experiments.

symmetrical with DAPter, and is trained by optimizing the recovery

loss, Lrecover. It is defined as Lrecover = |Ir − I |
2
, where Ir is the

reconstructed image from the abuse-prevented one, and I is the
corresponding original image. Please note that DAPter is fixed

during the training. To make this attack more powerful, we even

allow the adversary in our experiments to utilize the same dataset

used in the training of DAPter.

6 EVALUATION SETUP
In this section, we present our evaluation setup, including the

DAPter implementation, considered DLISes in use, and correspond-

ing new DLISes if the data abuse occurs. The evaluation results are

provided and analyzed in Section 7.

DAPter Implementation. We implement DAPter on the top of

the Tensorflow v1.13.1 [6]. We use a PC with four NVIDIA TITAN

Xp GPUs for the offline training of DAPter for the targeted DLIS

model. The training time, on average, is about 90mins regardless
of what the targeted DLIS model is. Trained DAPter is wrapped as

an Android App with the TensorFlow Inference Interface, and the

size of this App is around 1M. In our evaluation, we deploy and test

DAPter on three different mobile SoCs, including the Snapdragon

855 Plus, Kirin 960, and Helio X30. Their basic information is listed

in Table 1. DAPter’s runtime overhead is shown in Section 7.4.

ConsideredDLISes.TheDAPter prototype connects to the service
backend through the 4G network. Our backend is a typical machine

with Intel Core i7-6850K CPU, 128G memory, and one NVIDIA

TITAN Xp GPU, and it hosts various DLISes, which we consider in

our evaluation. The models in these DLISes are built from different

combinations of three classic DL structures and six representative

datasets. Detailed information is provided in Table 2 and Table 3,

respectively.

Abuse Settings. The six datasets mentioned above can be catego-

rized into three classes, the single-label dataset (SLD), the multi-

label dataset (MLD), and the hierarchical-label dataset (HLD). Each
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Figure 8: The average task accuracy and entropy of the images produced by converters trained with different λ values. (Section 7.1)

image in SLD has one ground-truth label. Each image in MLD has

multiple ground-truth labels that are not necessarily correlated.

For instance, a portrait photo has the label "sunglass" and the label

"male". In an HLD, although each image only has one label, all labels

are correlated and form a hierarchy. For example, an image labeled

with "cat" belongs to an aggregated label "animal". Each DLIS built

above picks either a single label in an MLD or an aggregated label

in an HLD as its inference goal. Therefore, given such DLIS, the rest

of MLD labels or sub-labels of used aggregated labels can be utilized

as the ground-truth when evaluating DAPter’s abuse prevention

effectiveness against considered attacks.

7 EVALUATION
In this section, we perform a comprehensive evaluation on our

DAPter prototype. First, we illustrate how to determine a suitable

hyperparameter λ in Equation 1. Then, we analyze DAPter’s per-

formance from the perspective of DL interpretability. In the last

two subsections, we demonstrate that DAPter can achieve all our

design requirements, i.e., the data abuse prevention (S) and the high
usability (U), defined in Section 2.

7.1 Hyperparameter λ
Hyperparameter λ, in Equation 1, is used to balance the security and
the usability of DAPter converter. A larger λ can let the converter try
to remove more pixels when performing the prevention. However,

a large λ may also cause too much information being removed from

user input and impair its usability, i.e., the accuracy of the targeted

task. In the following, we explore how λ affects the trade-off and

give an empirical λ value. The brief conclusion is that λ = 0.9 is a
sweet point to balance security and usability.

Settings. Here we experiment with two datasets, i.e., Cifar10 and

ImageNet10 (Table 3). We use all five DL networks introduced in

Table 2 as our considered DLIS models. In what follows, we use a

dataset name and network name pair to denote different DLIS tasks:

Cifar10-LeNet, Cifar10-ResNet18, Cifar10-VGG11, ImageNet10-Resnet50,

ImageNet10-VGG16, and ImageNet32-ResNet18.

We train each DLIS task with λ values ranging from 0 to 1 and

present the results in Figure 8. As we can see, a larger λ value

results in lower task accuracy and leads to a lower image entropy.

When the λ value changes from 0 to 0.9, the task accuracy remains

basically unchanged (the average drop is less than 3%), but the

entropy value of the converted image drops to less than 30% of

Table 3: The datasets used to train the DLIS models and the corre-

sponding DAPter converters in our experiments. SLD is short for

single-label dataset, MLD is short for multi-label dataset, and HLD

is short for hierarchical-label dataset.

Name Type Dataset Info

CelebA [20] MLD

A large scale face dataset including more than

200,000 celebrity images. Each image has 40

attribute annotations.

LFW [13] MLD

A face image dataset containing 13,000 images, and

each image has labels on identity and gender.

Cifar10 [17] SLD

A dataset consisting of 60,000 32x32 color images

in 10 classes, with 6,000 images per class.

Cifar20:100 HLD

A dataset built on top of the Cifar100 [17] dataset
with 60,000 images in 100 classes. We group the 100

classes of Cifar100 into 20 aggregated superclasses

by semantics. The aggregated 20-superclass dataset

is denoted as Cifar20. Therefore, Cifar20:100 shares
the same dataset with Cifar100, and each image of

Cifar20:100 has an original class label

and a superclass label.

ImageNet10 SLD

A dataset consisting of 10 randomly-picked

classes from ImageNet [8].

ImageNet8:32 HLD

A dataset built on top of the ILSVRC2012

dataset [25]. ILSVRC2012 is a widely used subset of

ImageNet, which contains 1,286,167 images in 1,000

classes. According to the "popular synsets" released

on [1], we form an 8-category classification

dataset called ImageNet8 by the first eight synsets

belonging to "animal" and "instrumentation". For

each of these eight classes, we randomly choose

four child synsets and form up a 32-category

classification task called ImageNet32. Therefore,
ImageNet8 and ImageNet32 share the same data but

support different tasks.

what it is before protection. When the λ value gets greater than 0.9,

both the task accuracy and the entropy value will decline rapidly.

This means that when the λ value is around 0.9, our DAPter can

effectively balance the entropy value and task accuracy. Next, we

will experimentally prove the relationship between entropy value

and protection effectiveness.

To explore the relationship between entropy value and preven-

tion effectiveness, we perform the image reconstruction attacks

(Section 5.3) on the converted images produced by converters

trained for different tasks with different λ values. We present some

example images in Figure 9(a), and it shows that as the λ value

increases, the quality of reconstructed images becomes worse. We

measure the quality of recovered images through the structural

similarity (SSIM) index in Figure 9(b). It shows that a larger λ value

can bring a lower SSIM index value. At the point where λ = 0.9,
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Figure 9: Part of the recovered images and the average recover

quality under different settings.

the SSIM is less than 0.2, which means the recovered images have

very bad quality [33]. That is, the attackers can hardly perform the

image reconstruction attack when applying λ = 0.9 in the DAPter

system. We notice that the reconstruction attack result on LeNet is

bad even if λ is set to 0. This is because LeNet is a small network

and is under-fitting on the Cifar10 dataset.

We find that λ = 0.9 is a sweet point in all experiments to balance

the prevention effectiveness and the targeted task’s accuracy since

the task accuracy drops only less than 3% when λ = 0.9. That is, the

converter trained with λ = 0.9, which removes most information

unrelated to the targeted task and preserves the useful information,

can achieve high performance on both security and usability. This

λ will be set as 0.9 in rest evaluations unless otherwise specified.

λ Tuning Strategy. In a practical scenario, the default λ value 0.9

can be first used by the DLIS provider to train the DAPter instance.

Then the provider can measure the security and usability indices,

i.e., entropy value and the drop in task accuracy, on the outputs of

trained DAPter. If both indices can meet the criterion (lower than

3 and 3% respectively), which is most like to occur according to our

empirical study, no further tuning is needed; if the security index

is higher than 3, the provider can increase the λ value by 0.02 and

perform a fine-tuning on the DAPter instance; if the accuracy index

is higher than 3%, the provider can reduce the λ value by 0.02 and

perform a fine-tuning. The above step is repeated until both indices

meet the criterion.

7.2 Conversion Quality
We analyze the converted results of DAPter via the saliency map.

The saliency map is a visualized map interpreting, in which pixels of

an image are highly relevant to the inference accuracy of a targeted

DL model.

Metrics. We choose the SOTA approach Grad-CAM [26] to gen-

erate a pixel-wise saliency map. Given an inference input image

and a class C , Grad-CAM can generate a saliency map represent-

ing which part of the input supports the CNN model to decide

C . The saliency map has the same size as the user inference in-

put, and it can describe how important each pixel is to the infer-

ence result. The pixels with larger importance values contribute

to the high accuracy of the targeted DLIS. We compute the im-

portance value V of the user inference input I for the inference

Table 4: The normalized input importance value of different con-

verter and DLIS model combinations. (A for arched eyebrow infer-

ence, B for bangs inference, E for eyeglasses inference, and W for

wearing lipstick inference.)

Converter A Converter B Converter E Converter W
DLIS A 1 7.21 × 10

−3
5.02 × 10

−4
4.46 × 10

−1

DLIS B 1.47 × 10
−2 1 7.36 × 10

−5
1.22 × 10

−1

DLIS E 9.61 × 10
−2

7.52 × 10
−2 1 2.83 × 10

−1

DLIS W 5.02 × 10
−10

1.11 × 10
−10

0.00 1

task C as: V = |Grad − CAM (M, I ,C)|
1
. M is the targeted DLIS

task. We also compute the importance value VD of the user in-

ference input I for the DAPter-enabled inference task C as: VD =
|Grad − CAM (MD , I ,C)|1.MD consists of a DAPter converter and

its corresponding DLIS model, which is defined as:MD (•) =

M(Converter(•)). The importance valuesV andVD can depict which

part of the user input I is meaningful toM andMD , respectively.

Attention Consistency. We experiment five times by choosing

three attributes recognition from CelebA dataset as the targeted

tasks. The selected attributes are relevant to the distinct position

of the human face. We denote performing saliency analysis on the

vanilla DLIS (M) as before-protection saliency analysis. We denote

performing saliency analysis on the DAPter-enabled DLIS (MD )

as the after-protection saliency analysis. We show some of the

saliency map examples in Figure 10. We can see that the saliency

maps generated by the before- and after-protection have high simi-

larity. That is, DAPter’s protection procedure doesn’t change the

operation logic of the DL model of the targeted DLIS, and the model

attention is consistent before and after the protection.

Effectiveness. Here we show that the DAPter converter can do

remove the information unrelated to the targeted DLIS task and

retain useful information. Recall that each converter is trained with

the DL model of a targeted DLIS. We train four converters for

arched eyebrow inference, bangs inference, eyeglasses inference,

and wearing lipstick inference. Then we attach each converter to

four inference models, producing 16 converter and DLIS model

combinations. We calculate the importance value for different com-

binations. If our DAPter converter works, the importance value of

the combination consisting of the DLIS model and its corresponding

converter should be larger than other combinations containing this

DLIS model.

The average importance values of the different converter and

targeted model combinations are shown in Table 4. We can see

the importance of the DLIS model attached by its corresponding

converter is at least 2.24× larger than the DLIS model attached by

a random converter. That is, DAPter can effectively prevent the

unmatched target model from extracting information from the user

input protected by the converter, which corresponds to the targeted

DLIS.

7.3 Security Evaluation
7.3.1 Auto Recognition Attack. We introduce the auto recognition

attack in Section 5.1. Here we show DAPter can effectively resist

this kind of attack.
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Figure 10: The saliency maps generated by the DAPter-enabled DLIS and the vanilla DLIS. The white part of the saliency map indicates that

the pixel at the corresponding position in the original image is of high importance to the results.

Figure 11: Experiment results of auto recognition attack. These

attack tasks have no correlation with targeted task.

Case 1. Attack tasks have no correlation with the targeted task. To
make a comprehensive evaluation, we randomly select two HLDs

(Cifar20:100 and ImageNet8:32) and one MLD (LFW) to perform

the attack. The attack settings are introduced through the dataset

and network architecture pair as follows:

(1) Cifar20:100 & ResNet18.We use the aggregated superclass

label as the targeted task and use the fine label as the attack

task.

(2) LFW & ResNet18. We use gender inference as the targeted

task and use the people identification as the attack task.

(3) ImageNet8:32 & ResNet50. We use the aggregated label

used in ImageNet8 as the target task and use the label of

ImageNet32 as the attack task.

We perform the attack in the following steps: (1) Transforming

the image of each dataset by using the corresponding converters

into the converted datasets. (2) Performing the targeted task and

the secondary task on both the original dataset and the converted

dataset. The accuracy of the task on each dataset is shown in Fig-

ure 11. (3) Calculating the accuracy loss of the targeted task and the
attack task, respectively, before and after the image transformation.

The accuracy of the attack task on the converted image drops 10×
to 25× of that of the targeted task. That is, DAPter can effectively

defense auto recognition attacks.

Case 2. Attack tasks have correlations with the targeted task. We de-

fine a metric accuracy index to measure the results of the attack that

has correlations with the targeted task. To quantify the correlation

Figure 12: Success rate of auto recognition attack on different

attributes (ideal protection v.s. DAPter protection). These attack

tasks have correlations with the targeted task.

between the attack task and the targeted task, we experiment with

the attribute inference tasks. For the attribute inference task, which

only outputs a result of true or false, the correlation between two

inference tasks can be measured with the co-occurrence probability

of labels of those two tasks. Let Pco
(
Ai ,Aj

)
be the co-occurrence

probability of attribute Ai , which is the targeted task, and attribute

Aj , which is the attack task. The co-occurrence probability can be

computed as:

Accideal =
��Pco (Ai ,Aj

)
− 0.5

�� + 0.5 (5)

However, in practice, the flaw of dataset and constraint on DL tech-

niquesmakes it nearly impossible to reach 1.0 accuracy.Wemeasure

this impediment by the vanilla accuracy that can be reached by the

attacker on the original dataset. So if our DAPter works ideally, the

accuracy of the attack task can be computed as:

ˆAccideal = Accideal ×Accvanilla (6)

Accvanilla is the accuracy that can be reached on the original dataset

by the same attacker using the same network structure.

We use the dataset CelebA to perform this type of attack, choose a

popular gender inference as the targeted task, and train a converter.

We use the converter to protect every image in the dataset and train

8 attribute inference tasks with the converted image. The attribute

names, corresponding Accideal and ˆAccideal (see Equation 6), are

shown in Figure 12. To ensure that the auto recognition attack has
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the same capability as the targeted task, we use the same model

structure, i.e., ResNet18, for both the targeted and attack task model.

The accuracy of the targeted DLIS (gender inferring) on original

images is 0.965 and slightly varies to 0.979 on the converted images.

The results of all eight auto recognition attacks are presented in

Figure 12. In most cases, the accuracy of the images protected

by DAPter is only slightly higher than the theoretical accuracy.

Therefore, our DAPter can nearly remove all unrelated information

and effectively raise the attack bar, even if the attack task is highly

correlated with the targeted task.

7.3.2 Visual Recognition Attack. The targeted DLIS model used

here is a gender inference model trained with the CelebA dataset

and ResNet18 network. The attack goal is to label another four

attributes from the input images of the targeted DLIS model. These

attributes are arched eyebrow, bangs, chubby, and wearing glasses.

We randomly select twenty positive instances and twenty negative

instances of each task from the converted images to organize an

evaluation set consisting of 160 images. Then, ten volunteers are

invited to conduct the attribute inference task on this dataset. Part of

the converted images is shown in Figure 13. The visual recognition

attack accuracy on converted images is about 0%. That is, the images

protected by DAPter can defend against visual recognition attack

and human labeling effectively.

7.3.3 Image Reconstruction Attack. We introduce the image recon-

struction attacks in Section 5.3 and perform evaluations on the

attack’s feasibility by measuring the quality of the reconstructed

images in Figure 9(b). Part of the reconstruction attack results has

been presented in Figure 9(a). To show the generality of DAPter,

here we conduct more experiments on more inference tasks.

We launch this attack on four DLIS models built with the CelebA

dataset and ResNet18 network. Some result examples are shown in

Figure 13. The average SSIM between original images and recon-

structed ones is less than 0.2, indicating that attacks are failed. To

further verify these results, we also ask the five volunteers to per-

form a pairing task. Each person is asked to label 100 reconstructed

images with attributes that are not related to the targeted task. In

the end, there is no successful case of labeling.

7.4 Usability Evaluation

Backend Throughput. Adapting DAPter does not require any

change at the backend side, including the system architecture and

inference model. Thus, the service throughput is maintained. How-

ever, the TEE-based and FHE-based data protections downgrade

the original service throughput by 2.5× ∼ 50× and 1000×, respec-

tively [30]. DAPter shows great superiority in balancing security

and usability in our considered scenario.

Service latency. Compared to original service latency, DAPter

only adds 109ms , 292ms , and 309ms , respectively, when tested on

our three mobile SoCs, i.e., the Snapdragon 855 Plus, Kirin 960, and

Helio X30. The user input size in our tests is 224 × 224px.

Bandwidth usage. Thanks to our entropy reduction approach,

DAPter can effectively save the network bandwidth usage even

compared to the original service case. DAPter’s bandwidth effi-

ciency is 2.1× ∼ 41× better than the original one when measured

with data from LFW, ImageNet, CelebA, and Cifar10.

8 RELATEDWORKS
FHE-based methods protect the input data by performing the DL in-

ference in a homomorphic encryption manner. All user input data is

encrypted before uploading to the server side. Work [10] shows that

the end-to-end processing time of an FHE-enabled DLIS, equipped

with a four-layer neural network, is up to over 297 seconds.

TEE based methods use TrustZone or SGX to protect user input

and the whole computation process. Work [14] isolates user’s infer-

ence data from the DLIS provider. However, SGX is fully operated

in CPU and can’t utilize the computation power of GPUs, so the

inference speed is quite slow. For example, AlexNet takes up to

3,843 seconds to perform one inference. Work [30] combines SGX

enclave with GPUs to achieve higher efficiency. These technologies

can bring significant system overhead to DLISes. LEAP [29] is a

lightweight TEE designed for mobile devices and friendly to DL

inference. It makes the DL inference protected by TEE to access

mobile GPUs with ease. However, DLIS providers must change

their existing DLIS architecture to adopt the above technologies.

Recall that our DAPter does not need to change the existing DLIS

architecture and only introduce very low system overhead to DLIS

(about 109ms ∼ 309ms).

The DL model partitioning (MP) [19, 23, 32] based solutions split

the DL model into two parts and offload the front part, which is

responsible for extracting intermediate features from the user input

to the client-side. However, the intermediate features appear to

be vulnerable to image reconstruction attacks [9]. So MP based

methods usually enhance their security with other techniques.

Work [23], an MP-based method, proposes a hybrid architecture

for data abuse prevention in the DLIS scenario. Besides network

partitioning, this work adopts dimensionality reduction, siamese

fine-tuning, and noise addition to cope with image reconstruction

attacks. However, only by offloading a large amount of computation,

i.e., layers of the neural network, to the user side is it possible to

defend against this attack. For example, all front 11 layers of VGG-

16 should be offloaded to the user side, and the offloaded layers cost

about 7 seconds on the user side, which is larger than 60× that of

us.

Work [32] brings differential privacy (DP) into MP-based solu-

tions by adding perturbation to the intermediate feature produced

by user-sider layers. However, data abuse prevention cannot be

formalized as a DP problem because one simply cannot define adja-

cent data in this scenario. Therefore, even if someone guarantees it

is impossible to infer the specific value of any element in user data

through intermediate features, attackers can still mine and restore

a large amount of user information through intermediate features.

If someone wants to apply DP in our scenario, they must add high-

intensity noises to the whole images and inherently cause serious

performance degradation to the pre-trained networks. Work [19]

also pointed out through experiments that it is difficult for DP-based

solutions to balance usability and security in user data protection

scenarios.
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Figure 13: Examples of the image reconstruction attack. For each original image, we show its corresponding two images - one is converted

by DAPter and the other one is reconstructed by the adversary from DAPter’s converted image.

PAN [19] is a data abuse prevention work that brings adver-

sarial learning to defend against certain input information being

abused. It requires users to specify what they want to protect to

the user-side model’s training procedure. It shows poor scalability

in the DLIS scenario because DLIS providers cannot provide a dif-

ferent converter for each user. Please recall that our DAPter can

work without the user’s involvement/specification, which is more

friendly from the web provider’s perspective.

PECAM [34] is a privacy protection strategy in video security

analytics scenarios. It proposes a securely-reversible transformation

for video privacy protection. The protected results produced by

PECAM can be inspected by human and AI algorithm to perform

common video analytics tasks. Our DAPter is designed with the

PoLP principle, which prevents data from being abused in image-

based DLIS scenarios. The protected result cannot be restored, nor

can it be labeled by human viewers and any secondary AI algorithm

tasks.

9 CONCLUSION
This work addresses a unique data abuse issue in the popular sce-

nario of the deep learning inference service. The proposed DAPter

is able to intelligently and efficiently convert at the user side the

DLIS inputs into their abuse-prevented versions, so that the con-

verted inputs cannot be abused to train new DLIS models at the

backend side. DAPter practices the principle of least privilege in the

context of DLIS and strikes a balance between security and usability.

Our comprehensive evaluation shows that DAPter is lightweight

on mobile devices, transparent to existing DLISes, and secure in

defending against the adversary. DAPter is able to strengthen the

trust between the web providers and their users.
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