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Abstract—With the increase in the variety and quantity of
malware, there is an urgent need to speed up the diagnosis and
the analysis of malware. Extracting the malware family-related
tokens from AV (Anti-Virus) labels, provided by online anti-
virus engines, paves the way for pre-diagnosing the malware.
Automatically extract the vital information from AV labels will
greatly enhance the detection ability of security enterprises and
equip the research ability of security analysts. Recent works
like AVCLASS and AVCLASS2 try to extract the attributes of
malware from AV labels and establish the taxonomy based
on expert knowledge. However, due to the uncertain trend of
complicated malicious behaviors, the system needs the following
abilities to face the challenge: preserving vital semantics, being
expansible, and free from expert knowledge. In this work, we
present AVMiner, an expansible malware tagging system that
can mine the most vital tokens from AV labels. AVMiner adopts
natural language processing techniques and clustering methods to
generate a sequence of tokens without expert knowledge ranked
by importance. AVMiner can self-update when new samples
come. Finally, we evaluate AVMiner on over 8,000 samples from
well-known datasets with manually labeled ground truth, which
outperforms previous works.

Index Terms—AV Labels, Expansible, Natural Language Pro-
cessing

I. INTRODUCTION

According to the report of AV-TEST[1], 130 million new
viruses were detected in the past year (4.1 viruses per second
on average). Rapid mutating malware has a great impact
on daily lives, causing huge losses to people’s properties.
Hence, precisely tagging a suspicious malware in advance will
significantly help security enterprises to archive the malware
by different families, and assist security analysts in further
analysis, even patching the vulnerabilities.

Some online services like VirusTotal[2] provide malware
labels detected by various anti-virus engines, which are called
AV labels. The naming way of AV labels follows the origi-
nal intention of MAEC (Malware Attribute Enumeration and
Characterization)[3], aiming to propose a structured represen-
tation with high-fidelity information about the attributes of
malware. However, since the labels are produced by differ-
ent vendors independently, they are always inconsistent with
each other on the judgment of characteristics (i.e., malicious
or benign), descriptions (e.g., malware class, property, and
behavior), and so on. Previous works have located the label
inconsistency problem. What’s more, AV-Meter[4] empirically
studies the correctness and inconsistency of malware tagging

on manually labeled datasets. Even well-known vendors can
not always perform well. Based on the observation that tags
change over time, Zhu et al.[5] thoroughly research and show
that AV labels would flip over time, speculating AV vendors
produce strongly correlated labels.

Even though the massive AV labels are noisy, some
works[6], [7], [8] demonstrate that the ground-truth of tags
is hidden in the given labels, which can be automatically
extracted with rules built by expert knowledge.

Unfortunately, due to the unpredictable trend of malware,
the complicated relationships between malicious behaviors,
and the inconsistent description of AV labels, we are still
facing the following challenges of automatically extracting
the correct labels for the malware samples. ❶ Complex re-
lationships of malicious behaviors and vendor naming rules
are challenging to be exhausted by the limited rules. Is it
possible to extract the labels and reunite the relationships be-
tween them Without Expert Knowledge? ❷ Although different
AV vendors produce inconsistent labels, the labels show an
inherent relation. The different detection mechanisms (e.g.,
static analysis, sandbox execution), focus on different aspects
of the malware. A single label may only describe a malicious
behavior profile, but breaking up and regrouping the massive
AV labels may give a full picture of the sample. So how
to Preserve Vital Semantics rather than directly follow the
principle of the minority obeying the majority? ❸ The arms
race between hackers and security researchers is increasingly
fierce. Researchers are unable to predict the characteristics of
the new kind of viruses before their appearance, let alone
categorize them. Some new malware, e.g., HeartBleed[9],
EternalBlue[10], and Vjworm[11], cannot be classified into
any malware type. So how to make the system Expansible
adapt to the development of malware?

To deal with the problems mentioned above, we present a
novel malware tagging method called AVMiner (Anti-Virus
Miner), which can adapt to new data with no human effort.
① AVMiner adopts state-of-the-art NLP (Natural Language
Processing) techniques and adaptive clustering techniques to
extract the labels for the malware, rather than establish ex-
cessive rules with massive expert knowledge. The system will
tokenize, generalize and extract the key label(s) and orchestrate
them according to their relations Without Expert Knowledge.
② By utilizing machine learning techniques, we can be freed
from extracting endless rules. We try to Preserving the Vital



Semantics as much as possible, based on the principle of co-
occurrence frequency. The extracted labels will be reunited to
a relation graph, which will give a full picture of the malware
to the users. ③ Due to the system design, AVMiner requires
almost no expert knowledge. With the mutation of malware, it
is able to update self-adaptively to deal with coming malicious
samples and its AV labels. So the Expansibility of the system
can meet the community’s needs.

We evaluate AVMiner on over 8,000 samples with man-
ually labeled ground truth and compare it with state-of-the-
art malware label extraction method. AVMiner achieves an
accuracy of 93.5% when outputs 3 labels, and 97.9% when
outputs 5 labels, separately higher than AVCLASS and AVCLASS2
by about 7% and 9%. Also, we evaluate AVMiner on about
2 million samples without ground truth, which can give the
output as long as the AV labels are given. But AVCLASS and
AVCLASS2 fail to output the result for 21.8% and 10.6% of
samples. AVMiner shows great robustness and expansibility
on the diverse distribution of malicious samples.

The main contributions of our work are as follows:
1) We propose a novel malware label generation method by

mining the malware label from the massive AV labels
collected from security communities to accelerate the
malware diagnosing procedure.

2) We design a new tool AVMiner to effectively generate
the tokens that express malware’s security semantics
from the multi-source and noisy AV labels. AVMiner
works without expert knowledge and can self-adaptively
update with the newly come samples.

3) We evaluate the AVMiner on 2 manually labeled datasets
and measure it on about 2 million malicious samples
without ground truth. Experimental results show that
AVMiner behaves better than the existing works.

II. SYSTEM DESIGN

A. Overview
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Fig. 1: Workflow of AVMiner.

In this section, we provide an informal overview of our
method AVMiner on an illustrative example as shown in
Figure 2. According to Figure 1, AVMiner mainly contains
five parts: data preparation, pre-processing, vectorization, in-
sample clustering and keywords output, each of which will be
introduced in detail in the following subsections.

B. Data Preparation

The Data Preparation phase is shown on the left side
of Figure 1. In this phase, we first collect the malware’
detected results from the VirusTotal (denoted as AV label).

Each AV label contains a sequence of keywords indicating the
detected result from each vendor assembled on VirusTotal, as
shown in Figure 2-1. These AV labels describe the possible
behavior, attributes, and categories of a malicious sample
(e.g., ”Win32Flystudio.worm.Gen” produced by AhnLab-V3,
”Win32” denotes the platform, ”Flystudio” denotes the cate-
gory, ”worm” denotes the behavior). In the following phases,
AVMiner will process the AV labels into an intermediate
representation and extract the keywords best describing the
samples (i.e., ”Flystudio” in the aforementioned example) for
the users.

To free from summarizing excessive rules and make the
best use of advanced techniques, our AVMiner is based on
statistical results and equipped with machine learning methods.
To deal with the problem of cold start with zero knowledge,
we gather a considerable amount (more than 8,000 in the
evaluation) of samples to set up the corpus in the following
phase. When new samples come, they can be directly added
to the system and make the tool adaptive to unknown kinds of
malware. Abundant and diverse datasets of malicious samples
can not only make our systems more inclusive for different
kinds of malware but also enable us to build a virus-related
knowledge graph in the future.

1) After Data Preparation

2) After Tokenization

3) After Token Filtering

4) After Token Clustering

5) After Token Correction

6) Output
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Fig. 2: Running example. The left side of steps 1) to 3) denotes the
name of AV vendors, right side denotes the AV labels and processed
tokens. Step 4) and 5) contains different clustered tokens and their
amount. Step 6) outputs the ranked tokens.

C. Pre-Processing

The pre-processing phase consists of two parts: tokenization
and token filter. The tokenization aims to split the AV labels
into tokens for the same token merging and related tokens
clustering. The token filtering aims to filter out the tokens
with a few semantics and prevent them from blocking the
subsequent stages.

a) Tokenization: The AV labels are sequences of tokens
and are highly vendor-dependent. For example, in the face
of a Trojan sample which can be classified as delf, Emsisoft
describes it as Trojan-Dropper.Delf!IK, but it is described as
Trojan.DL.Delf!qqcViDnxCRM by VirusBuster. The various
strategies of AV vendors to tag the malware leads to the AV



labels appearing in quite different formats but with even the
same semantics. So it is vital to split the AV labels to find
the associated parts between the inconsistent labels. What’s
more, the trend of malware development is unpredictable, and
AV vendors may update tagging strategies over time. But it
takes time to customize rules that cause the rules to always
be out-of-date. So customizing a set of constant rules is hard.
To address the challenges mentioned above, we first tokenize
the AV labels into the smallest units, called tokens, which
are separated by some specific punctuations in AV labels.
Specifically, the compound words in our scenario should be
preserved, because these words usually have specific semantics
in a particular context. To clearly present the result, we replace
all the punctuations with a unified separator, denoting the
tokenization operation. According to the example in Figure 2-
2, the AV label Win32/Flystudio.worm.Gen produced by the
vendor AhnLab-V3 is related to a malware sample. We process
the AV label into Win32.Flystudio.worm.Gen, containing 4
tokens, separated by a dot, leaving alone the compound word
Flystudio and the abbreviation Gen (representing for word
generic).

b) Token filter: Performing tokenization may produce
a large number of redundant and meaningless tokens, so
we need to remove them, aiming to minimize the influence
of noise. For example, according to Figure 2-2), AV label
”Win32.Worm.Nuj.A.5” produced by CAT-QuickHeal com-
prises two tokens A and 5, which seem to have low-security
semantics for the malware and may only be used as a malware
identifier or only as a serial number. Although we find this
kind of token often appears in some fixed locations, it cannot
be removed directly due to the following reason. The token
number of each AV label is quite different, ranging from 1 to
6. Even the AV labels produced from the same vendor may
not be aligned. For example, the token number of AV labels
produced by BitDefender is ranging from 3 to 5.

Through a detailed investigation of the collected AV labels,
we find them there are some key differences between the
meaningful tokens and the meaningless ones. First, the AV
labels from the same vendor have almost the same formal
structures. For example, the first token of BitDefender is
usually a feature description (e.g., generic, trojan), the second
is usually a file type description (e.g., JS), and the last token
is usually a number or identifier. Although the length may
vary depending on the description, the same type of tokens is
generally in the same relative position. Second, the meaningful
tokens usually have a high repetition frequency, and they are
often used to describe an attribute, family, class, etc, while
the meaningless tokens are only used as an identifier with
a low repetition frequency. So the token position and the
token distribution light the way for us to effectively filter
the meaningless tokens. We come up with a strategy called
Unique Tokens Fade Away. According to the observation, the
same relative token position (in order or reverse) of AV labels
produced by the vendor always contains the same type of
tokens as mentioned. And the meaningless tokens are unique
in the same relative position. When we count the proportion

of unique tokens in all the tokens, this may lead to a clear
distinction. Here we define the unique index σ as,

σ(i, imax, vt, f) =

{
Tu(i,vt)
Ta(i,vt)

, f = 1
Tu(imax−i,vt)
Ta(imax−i,vt) , f = 0

(1)

where σ indicates the proportion of unique tokens (i.e.,
tokens appear only once) in all the tokens. The calculation
of σ is restricted to the same relative position of the same
vendor. The parameters of σ are defined as follows: i denotes
the ith position of the AV label, imax denotes the longest token
sequence in the same vendor, vt denotes the tth AV vendor,
f denotes a flag whether we count the token orderly (f=1)
or reversely (f=0). Tu(i, vt) denotes the amount of the unique
tokens in the ith position from the tth AV vendor, Ta(i, vt)
denotes the amount of all the tokens in the ith position from
the tth AV vendor.
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To determine the specific value of the unique index σ,
we empirically investigate the relationships between different
values of σ and their result. The distribution of σ is shown
in Figure 3, the horizontal axis of which denotes the range
of σ, and the vertical axis of which denotes the number of
different positions of vendors corresponding to the range of
σ. According to the figure, most of the positions have a few
unique tokens (i.e., σ<0.1). When σ is around 0.5, there is
a peak, which we think may be the position where a large
number of meaningless tokens appear. Moreover, we count
the remaining tokens when we adopt a different value of σ,
which is shown in Figure 4. We find that there is a spike of
around 0.3 and 0.7. We speculate that this may be due to the
sudden introduction of a large number of meaningless tokens
when the values are greater than 0.3 and 0.7, resulting in this
phenomenon. Based on the above observations and analysis,
we set the σ at 0.3. For each vendor, we separately process the
tokens column by column of the corresponding AV labels until
σ drops below 0.3. We keep scanning the AV labels orderly
and reversely, to fade away the meaningless tokens, processed
result of which is shown in Figure 2-3.

D. Vectorization

By a thorough investigation, we find GloVe (Global
Vectors)[12] is a suitable vectorization method in our scenario.
GloVe is good at generalizing the co-occurrence relationship
in the global scope. What’s more, according to the algorithm
design, GloVe does not use neural networks, and the com-
putational complexity is independent of the data size, which
is conducive to system expansion. The main procedures of
this technique are first to count the co-occurrence matrix
for each token with a fixed counting window and then to



reduce the dimension of the sparse matrix while ensuring
the co-occurrence relation between each word. The target
function is designed to make related tokens closer to the higher
dimension, while irrelated tokens further, shown as follows,

J =

N∑
i,j=1

f (Xij)
(
TT
i T̃j + bi + b̃j − logXij

)2

(2)

where TT
i denotes the transpose of ith token vector, Tj denotes

the vector of jth token, bi and b̃j denote the bias terms, Xij

denotes the amount of jth token appearing in the window of
ith token, function f denotes the weight function, and N is
the size of the token vocabulary.

E. In-Sample Clustering

In this stage, we regroup the tokens by samples. After
being processed by the former steps, we transform the tokens
into vectorized representations, trying to map the context-
aware relationships to the higher dimensions. AVMiner aims
to output the most related token or token set to the malicious
sample. So if the related tokens and the irrelated tokens can be
classified into two groups, the output can be produced much
more effectively. Fortunately, according to our observation,
related tokens are always appearing together (e.g., Trojan,
Redirctor and Hidelink), the transformed vectors of which
are also closer in the higher dimension. Due to the situation
of lacking ground truth (for supervised machine learning), a
suitable unsupervised clustering technique can pave the way
for the final output.

a) Token Clustering: There are several clustering algo-
rithms that adopt different strategies to fit diverse situations. To
meet our needs, we have some requirements for the clustering
method. First, the lower the computational complexity, the bet-
ter. As the system iterates, more new samples are introduced,
and the calculation speed greatly affects the performance of the
system. Second, the algorithm should be free from presetting
the number of clusters. Because we can not predict how many
clusters will be produced from one sample.

According to the aforementioned analysis result and some
empirical experiments, we leverage Mean Shift[13] as our
clustering algorithm. Mean Shift is a non-parametric feature-
space analysis technique, which is always applied in cluster
analysis. In other words, the algorithm calculates the offset
means of the current point by specifying the radius of a high-
dimensional sphere (i.e., parameter bandwith) and by contin-
uous iteration, so that it can move to the space containing
the most points at the same time. This characteristic quite
fits our requirements, and we also hope to find the set of
tokens with the highest correlation, which may contain the
most accurate descriptive tokens of the malicious samples, as
shown in Figure 2-4.

b) Token Correction: After grouping the tokens accord-
ing to their relevance, we can sort them according to their
frequency and the attributes of the clusters. However, we find
that there is no uniform naming convention among the AV

vendors, so some of the tokens may imply the same word, but
with several different letters, even because vendors come from
different countries. There are several reasons why we are con-
sidering token correction in the current step. On the one hand,
because the computational complexity of pair comparison is
O(n2), it takes a long time to make a comparison in the whole
corpus. On the other hand, there may be mis-correction in the
algorithm design, and we hope to minimize the side effects.

downloader

downloder

downloader2

downloadr
downlaoder

downloadre

Fig. 5: An Example of the Correct Token and Mistaken Tokens.

As shown in Figure 5, it is a real case from our token
corpus. All the tokens imply the same word downloader, but
only the token colored with red (downloader) is spelt correctly.
Because the frequency of the token plays an important role
in the final rank, we may lose the weight of key tokens
by mis-spelling. For instance, a malicious sample output the
regrouped tokens (in one cluster) as shown in Table I, ranked
by token frequency. Row 1 and 2 denote the tokens and their
amount before being corrected, and rows 3 and 4 denote
the ones after the procedure. The manually labeled ground
truth of this sample is plankton, but several vendors mis-spell
the words (i.e., plangton), so the key token plankton loses
some frequency weight, which may lead to the wrong output.
Once we correct the words and refresh the rank by frequency
(from rank 5 to rank 2), we may have a higher probability of
outputting the right words in the final stage.

TABLE I: Example of token correction.
Before Correction After Correction

Token # Token #
andriod 13 andriod 13
trojan 11 plankton 12

airpush 8 trojan 11
plangton 6 airpush 8
plankton 6 adware 4

To complete token correction without affecting normal
tokens, two prerequisites are given. Firstly, the correction
task is only limited to the same cluster within the sample,
minimizing the computational complexity (the complexity
of pair comparison is O(n2)). Secondly, We raise an error
correction threshold δ to detect the tokens that need to be
corrected, and the token will be corrected only when it reaches
this threshold, which is defined as follows,

δ =
Edit(Ti,Tj)− LenDiff(Ti,Tj)

MaxLen(Ti,Tj)
(3)

where Edit(·, ·) denotes the Edit Distance (minimum num-
ber of edits for string conversion) between 2 tokens (i.e.,
Ti and Tj), LenDiff(·, ·) denotes the length difference, and
MaxLen(·, ·) denotes the max length among them. The reason
for setting the threshold in this way is that, not only can
it correct a few different token pairs (e.g., downloader and



downloadre), but also it can also find the abbreviations of
token pairs (e.g., gen and generic). When the threshold δ is
below 0.3, we think there are candidates in the token pair that
need to be corrected, and if a standard word (according to
Wiki) does not exist in them until a standard word associated
with them is found. The result is shown in Figure 2-5.

F. Keywords Output

To enhance the readability of the output, we try to rerank
the tokens, which also benefits from customizing the amount
of output. Besides the clustering relations and token frequency,
which can be leveraged as ranking criteria, more global
information should also be taken into consideration. Thanks
to the technique TF-IDF (Term Frequency–Inverse Document
Frequency)[14], which is a common weighting technique for
information retrieval and data mining. Which will be ranked
higher. The method is calculated as,

TFTi,L(malj) =
count(Ti)

|L(malj)|
(4)

TFTi,L(malj) (i.e., abbreviation of Term Frequency) denotes
the frequency of token Ti in the malicious sample L(malj),
count(Ti) denotes the frequency amount of token Ti, and
|L(malj)| denotes the amount of all the tokens in the ma-
licious sample L(malj).

IDFTi
= log

N∑N
j=1 I (Ti, L(malj))

(5)

IDFTi
(i.e., abbreviation of Inverse Document Frequency)

reflects the universality of token Ti in the corpus, N denotes
the amount of malware, I (Ti, L(malj)) denotes whether the
malware L(malj) contains the token Ti (1 for positive and
0 for negative). However, if the token Ti does not appear
in all the malware (e.g., when the dataset changes), then the
denominator in the formula equals 0. So we need to smooth
it, which is shown below,

IDFTi
= log

N

1 +
∑N

j=1 I (Ti, L(malj))
(6)

with the equations above on hold, we can calculate the TF −
IDF value as follows,

TF − IDFTi,L(malj) = TFTi,L(malj) ∗ IDFTi (7)

According to the definition and formulas, when the frequency
of a token in the malicious sample is higher, and the rarity is
higher, its TF-IDF value is higher.

By utilizing the clustering relations, token frequency, and
TF-IDF value, the tokens can be reranked in each malicious
sample by several steps, which are shown in the following
pseudocode. Firstly, we need to find the best cluster as the
candidate cluster, which contains the token with the highest
TF-IDF value. According to our observation, the best cluster
always comprises the tokens highly related to each other and to
the malicious samples. Next, by judging whether the amount of

tokens in the best cluster is sufficient, we will treat different
situations separately. If the amount is sufficient, the first N
tokens in the best cluster are added to the final result. And
if the token has the second-highest TF-IDF value, which also
indicates a relatively high correlation, we will replace it with
the N th token in the result. Otherwise, if the amount is
insufficient, all the tokens in the best cluster are added to the
result, the rest of which will be filled by the tokens according
to the TF-IDF value. Finally, the result is presented to users
in reranked tokens as shown in Figure 2-6.

Algorithm 1: Token rerank and output
Input: Clusters: Token clusters, as a 2D array. Each array,

Clusters[ClusterID] denotes a token cluster, as an array of tokens,
where the rank of the tokens indicates the token frequency.
TFIDF: Array of tokens, ranked by TFIDF
TopN: Amount of output tokens

Output: Result: Array of tokens, sorted by importance
1 Initialize: Result = ∅
/* Find the ID of the Best Cluster */

2 for ClusterID from 1 to Clusters.Length do
3 if TFIDF[1] in Clusters[ClusterID] then
4 BestClusterID ← ClusterID
5 end
6 end
/* The Amount of Tokens in the Best Cluster is

Sufficient */
7 if Clusters[BestClusterID].Length ≥ TopN then
8 Result ← Clusters[BestClusterID][1:Top(N)]
9 end

10 if TFIDF[2] not in Clusters[BestClusterID] then
11 Result[TopN] ← TFIDF[2]
12 end

/* The Number of Tokens in the Best Cluster is
Insufficient */

13 Result ← Clusters[BestClusterID]
14 for Index=1; Result.Length < TopN

and Index < TFIDF.Length; Index+=1 do
15 if TFIDF[Index] not in Result then
16 Result ← Result+TFIDF[Index]
17 end
18 end

III. EVALUATION

In this section, we first describe the implementation in
detail. Then, the dataset we use to evaluate AVMiner is
introduced, followed by the comparison of tagging accuracy
with prior works AVCLASS and AVCLASS2. Finally, we measure
AVMiner’s robustness in terms of dataset size, file type, and
sample detected time.

A. Implementation

In this section, we present the implementation of our system,
including the specific experimental details and parameters.

Firstly we retrieve data from VirusTotal. Once the retrieval
finishes, we analyze all the data to filter the tokens, removing
potentially meaningless tokens, using σ=0.3. Afterward, we
train a GloVe model, where the window size is 40, the vector
length is 32, and the training epoch is 100. Then, we use Mean
Shift, where bandwidth is 2 and training epoch is 100, and TF-
IDF to cluster tokens inside each malicious sample. Finally,
we correct tokens inside each cluster with δ=0.3.

The Python implementation uses the following libraries:
glove[15] and gensim[16] for vectorization, scikit-learn[17] for



TF-IDF, editdistance[18] for words correction, tabulate[19] for
visualization. The evaluation part uses GNU Parallel[20] to
speed up.

All our experiments are conducted on a PC with 16 GB
memory, and 1 Intel i7-7700k CPU (4.2 GHz).

B. Dataset

We evaluate AVMiner on the datasets shown in Table II.
Drebin[21] and Malheur[22] are manually collected and la-
beled malware datasets, which are also used in prior works.
These two datasets are well-known and also widely used by
several related works. Please note that our AVMiner is free
from domain knowledge, and it can adapt to newly come
malicious samples with fine-tuned models.

We also get a Superset by combining the two datasets.
Column 2 to 5 separately denotes the platform, the number
of malicious samples, the time range of sample collection,
and whether the dataset has manually labeled ground truth.

TABLE II: Datasets used in the evaluation.
Dataset # of Virus Type Amount Time Range with G.T.
Malheur[22] 24 3,086 08/2009 - 08/2009 ✓
Drebin[21] 178 5,511 08/2010 - 10/2012 ✓

Superset 202 8,597 08/2009 - 10/2012 ✓

We present the statistical results on file type as follows to
show the dataset more clearly.

TABLE III: Malheur (Type)
File Format Amount
Win32 EXE 2945
DOS EXE 139

unknow 2

TABLE IV: Drebin (Type)
File Type Amount
Android 5503

others (ELF, GZIP, ZIP) 3
unknown 5

Table III and IV present the distribution of file formats
(i.e., a standard way that information is encoded for storage
in a computer file) in our datasets. Malheur mainly consists of
windows executables (95.4%), with several DOS executables
(4.5%) and 2 samples that cannot be classified by VirusTotal.
Meanwhile, Android accounts for 99% of dataset Drebin, with
a few ELF, GZIP, ZIP, and 5 undetectable samples. They
contain malicious samples from 2 mainstream mobile and PC
platforms, based on which we can better demonstrate that
AVMiner is available for the commonly used platforms.

C. Overall Accuracy

Our experiments do not introduce external data without
clarity to augment the dataset described in Section III-B, which
can show that our AVMiner is not dependent on a large amount
of available data and that even a small amount of incremental
data can yield substantial results.

Table V presents the evaluation result on dataset Malheur
and Drebin, by comparing AVMiner with prior works AVCLASS

and AVCLASS2. Row 3 to 12 denote the tagging accuracy with
TopN ranging from 1 to 10 (i.e., if the manually labeled
ground truth is the same as either token in the result of
the concatenation of them, we take it as the positive case).
Since AVCLASS produces only one token for a single malicious
sample, its accuracy will remain the same no matter how
TopN changes. When we choose Top1, AVCLASS performs
better on both datasets than others, because it gives a very clear
and condensed classification result for a malicious sample,

with the help of rich expert knowledge. Once we choose Top2,
AVMiner goes beyond other tools. As we expand the chosen
range, the tagging accuracy of AVMiner continues to rise. The
reason that AVMiner cannot precisely hit the ground truth
within Top1 is that AVMiner sometimes place some generic
tokens at first, such as Android, JS, etc. In our system design,
we do not remove the tokens describing the file format, which
is a benefit for users to more comprehensively understand
the malicious samples. So the tokens describing categories of
behaviors may be placed to the back. But when the chosen
scope is expanded, they come into the output token list.

TABLE V: Tagging Accuracy of Malheur and Drebin.
Malheur DrebinTopN AVMiner AVCLASS AVCLASS2 AVMiner AVCLASS AVCLASS2

1 0.744 0.811 0.376 0.866 0.899 0.039
2 0.859 0.811 0.558 0.914 0.899 0.897
3 0.896 0.811 0.570 0.973 0.899 0.933
4 0.919 0.811 0.721 0.979 0.899 0.940
5 0.926 0.811 0.782 0.980 0.899 0.942
6 0.946 0.811 0.799 0.981 0.899 0.942
7 0.947 0.811 0.799 0.982 0.899 0.942
8 0.948 0.811 0.800 0.983 0.899 0.942
9 0.948 0.811 0.802 0.985 0.899 0.942
10 0.950 0.811 0.830 0.985 0.899 0.942

To further explore the different performances (accuracy and
trend) on the different datasets, we try to deeply analyze
the result and find the root cause. Intuitively, we take the
diversity of malware types, the amount of the dataset, and
the time range of collecting the samples. We first investigate
the tagging accuracy of different virus types of ground truth.
In Malheur, there are 24 types of virus, which are relatively
evenly distributed, with allaple, podnuha, and rotator having
the most samples, all with 300. While in Drebin, the taxonomy
is more detailed. There are 178 virus types in all, type
fakeinstall has the most amount of samples (907), and some
virus types have only one sample (e.g., acnetdoor, cellshark).

We investigate the accuracy of each virus type. Even Drebin
contains a more diverse virus type of malicious samples, the
majority of the dataset is made up of a few kinds of virus
types, e.g., Fakeinstaller, DroidKungfu, and Plankton. Most
of the AV vendors can effectively label these categories, so it
paves the way for the extraction. However, sometimes most
of the AV vendors cannot label the malicious samples, so it
blocks us from label extraction. As for Malheur, one of the
majority labels, Spygames, which takes up 4.5%, fails to be
distinguished by almost all of the AV vendors, only except for
AntiVir. What’s worse, the output of AntiVir for this type of
malicious sample is ”TR/Spy.Games.A”, causing all 3 tools’
tokenization strategy to split it as ”Spy”, ”Games”, and ”Spy”
and ”Games” do not appear in the Best Cluster, which leads to
the failure. As for AVCLASS and AVCLASS2, they rank the labels
only on their frequencies, causing ignorance. On the other
hand, we could extract some categories (e.g., rbot, zhelatin)
with 100% accuracy but AVCLASS and AVCLASS2 miss all of
the samples. We speculate that the expert knowledge-based
method sometimes leads to failure since it cannot cover all
the situations. But we choose to benefit from all the vendors,
which equips AVMiner with more expansibility.

Since AVMiner employs unsupervised machine learning, we



suspect that the performance may rely on the distribution and
amount of malicious samples. We apply the same experiment
to the Superset, and the result is shown in Table VI. The
result shows that the performance on supersets is even better
than the weighted average of the subsets. Parts of the datasets
may gain from each other (i.e., context relations), improving
the performance of previously underperforming parts. If so, it
indicates that the more related samples introduced, the better
the performance will be.

TABLE VI: Tagging Accuracy Comparison of the Superset
SupersetTop-N AVMiner AVCLASS AVCLASS2

1 0.800 0.867 0.161
2 0.910 0.867 0.774
3 0.935 0.867 0.802
4 0.966 0.867 0.860
5 0.979 0.867 0.884
6 0.981 0.867 0.890
7 0.989 0.867 0.890
8 0.989 0.867 0.891
9 0.990 0.867 0.891
10 0.991 0.867 0.902

According to the result, the accuracy of the previously men-
tioned sample ”Spygames” increases a lot, up to 50%. The rea-
son is that the token ”Spy” appears in Drebin with richer con-
text information, i.e., ”Spybubble”, ”Spymob”, ”Spyphone”,
etc. Therefore, this has a positive effect on establishing the
relation between ”Spygames” and other tokens, which intro-
duces the tokens ”Spy” and ”Games” into the Best Cluster.

D. Amount Sensitive

The previous results indicate that the performance of
AVMiner may be sensitive to the number of malicious samples.
With a larger amount, the diverse token context can provide
much more contextual information, which will enhance the
correlations between the related tokens. It will help AVMiner
more easily to capture the token relations in the real world.
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Fig. 6: Subset Evaluation Ranging from 10% to 90% of Superset
To validate our thought, we evaluate AVMiner on datasets of

different sizes, ranging from 10% of the superset to 90% of the
superset, comparing to the result by using the whole superset.
Our tool aims to provide users with precise information
with limited words. According to previous experiments, the
accuracy becomes stable after TopN is larger than 3. So we
choose Top1 and Top3 as representatives in the following
experiments.

As shown in Figure 6, the subfigure on the left denotes
the result of Top1, and the right side denotes the result of
Top3. To ensure the fairness of sampling, we conduct these
experiments 10 times each. We plot an area, and its upper
bound and lower bound refer to the result range of the
experiment of each subset. The line inside the area denotes

the average result. We find that the size of the dataset indeed
has some influence. The accuracy of AVMiner slightly drops
when the dataset is relatively small. When the size of the
dataset reaches 2,400 (about 30% of Superset), its accuracy
doesn’t differ much from the whole superset. Additionally,
as the amount of data increases, the accuracy grows larger,
and the fluctuation of accuracy also reduces. According to the
result, the larger the data set, the richer the samples, the closer
their distribution to the real world, and the more stable the
results. Compared to AVCLASS and AVCLASS2, we regard the
different data distributions as the root cause of the fluctuation.

To conclude, the experiment of negative sampling the Super-
set shows that the number of samples has some impact on the
performance. Since the diversity of samples decreases due to
the negative sampling, with the faded contextual information,
some correlations between the tokens may become alienated,
resulting in the result shown above.
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Fig. 7: Result comparison of sampling data and with external
malicious samples on Top1 and Top3.

The subsets collected by sampling from the same dataset
have a highly similar distribution to their superset. So the
result is unpredictable when external data comes into the
dataset and breaks the original distribution. To verify the
robustness of AVMiner, we conduct an experiment on the
subsets downsampling from the Superset, ranging from 10%
to 90%, adding 10,000 malicious samples randomly collected
from the real world (with no manually labeled ground truth).
Due to the data source, we can only evaluate the result on the
samples with ground truth, and we also repeat the experiments
10 times for sampling fairness.

As shown in the Figure 7, the left side of the figure denotes
the Top1 and Top3 results of all subsets, and the right side of
the figure denotes the Top1 and Top3 results of the subsets
together with 10,000 randomly selected samples. When ran-
dom external samples come in, it does lose some accuracy in
Top1, but the overall trend is pretty close. According to Top3,
the final average accuracy is almost identical. What’s more,
whether Top1 or Top3, when external data is introduced, the
experimental results will be more volatile than the original
data (have a wider range of colored areas). The experimental
results confirm that different distributed data may lead to the
loss of accuracy, but the overall stability is still strong.

Due to the space limitation, the sensitive study of file
format and time range can be found in our arxiv version,
the large unlabeled data study as well.



IV. RELATED WORK
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AV labels benefit the software security society for many
applications, such as building malware dataset, malware de-
tection and clustering[23], [24], [25], [26], [27]. Such as,
Drebin[21] and Malheur[22] separately set up datasets on
different platforms, and propose tools to detect them. However,
AV labels are not always stable. Zhu et al.[5] survey on a
large number of methods for malware labeling and analyze
the problem of label inconsistency. They trace the AV labels
of 14K samples for a year and conduct a thorough analysis
indicating that there is an influence between vendors on
producing AV labels. AV-Meter evaluates the performance of
AV vendors on different datasets, and the presented results
block researchers from using AV labels straightforwardly.

Malware Labeling. Facing the challenge above, AVMiner
mainly focuses on mining the meaningful tokens from incon-
sistent AV labels produced by the third-party platform Virus-
Total. We take it as an alternative to generate malware labels
for the malicious samples, so do AVCLASS [6] and AVCLASS2
[8]. The procedures of the three methods are summarized and
abstracted into three modules: pre-processing, alignment, and
output. First, all of the methods process the AV labels into
tokens minimizing the noise. Second, aligning the tokens in
terms of format and semantics (merging the similar tokens,
etc.) is ready for output. Finally, all the methods will output
the result with a different ranking strategy for the users. The
former works mainly leverage expert knowledge to set up
the taxonomy, but AVMiner substitutes the procedures with
intelligent ones. This design indeed causes more processing
time, but it lights a way to label the malicious samples with
less labor efficiency.

V. CONCLUSION

In this work, we propose AVMiner, an expansible AV label
mining method. AVMiner takes as input a malicious sample
with its corresponding AV labels, then pre-process, vectorize,
group, and output the keywords. Without any expert knowl-
edge, we are fully benefiting from the co-occurrence relations
between tokens. According to the evaluation, AVMiner has
better performance than previous works and shows robustness.
And finally, we discuss the effectiveness of AVMiner on a
large scale of malicious samples.
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