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ABSTRACT
Automatic dataset preparation can help users avoid labor-intensive
and costly manual data annotations. The difficulty in preparing
a high-quality dataset for object detection involves three key as-
pects: relevance, naturality, and balance, which are not addressed
by existing works. In this paper, we leverage information from the
web, and propose a fully-automatic dataset preparation mechanism
without any human annotation, which can automatically prepare
a high-quality training dataset for the detection task with English
text terms describing target objects. It contains three key designs,
i.e., keyword expansion, data de-noising, and data balancing. Our
experiments demonstrate that the object detectors trained with
auto-prepared data are comparable to those trained with bench-
mark datasets and outperform other baselines. We also demonstrate
the effectiveness of our approach in several more challenging real-
world object categories that are not included in the benchmark
datasets.

CCS CONCEPTS
• Information systems→Web mining; • Computing method-
ologies → Object detection.
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1 INTRODUCTION
Preparing training datasets is usually labor-intensive and time-
consuming, but crucial for deep learning models. For object detec-
tion, an important computer vision task, it is becoming more and
more difficult to manually collect and annotate datasets to meet the
demand of the community for a broader range of data categories
and volumes. More concretely, provided an object like “dinosaur"
which cannot be found in the benchmark datasets, is it possible
to automatically prepare high-quality training datasets? In this pa-
per, we explore the feasibility of automatically preparing an image
dataset that can be used to train a (weakly-supervised) detection
model. For dataset quality, we focus on three important metrics to
model performance and generalization: the relevance, naturality,
and balance. Given a target object, (i) the relevance means that an
image should contain at least one target object; (ii) the naturality
means that the distribution of the target object in the prepared
dataset should be as close as possible to its real-world distribution,
which is important to generalization; (iii) the balance means that
the prepared dataset should avoid duplication of similar images.

Previous works mostly focus on the relevance metric, while
ignoring the other two metrics. Specifically, works like [26] use
data augmentation to reduce the impact of irrelevant noisy data,
while other works employ re-ranking methods [8, 9] or image
clustering [13, 39] to improve relevance of prepared datasets.

In this paper, we revisit a unique resource in the real world, the
web. With information retrieved from the web, previous works
have tried to prepare data with prior knowledge [26] or augment
data for existing datasets [31]. However, they do not unleash all
the power of the web, which is the largest and most comprehensive
knowledge and data resource in the real world. As shown in Fig. 1,
we identify three key web information sources as follows,

• Corpora: the first source is the corpora edited and verified
via crowdsourcing, such as English Wikipedia and BookCor-
pus [42], which can capture comprehensive correlations of
almost any given term. This part of web information can be
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Figure 1: Examples of three information resources on the
web for our automatic data preparation. Top: corpora includ-
ing English Wikipedia. Middle: images from search engines.
Bottom: images from photo sharing sites.

exploited via a large-scale pre-trained model like BERT [6],
but it does not contain image data.

• Search engine images: the second source is the searchable
images sophistically polished and posed by website own-
ers for the purpose of easy understanding. These iconic or
typical images [18] can be semantically matched via the im-
age search engines like Bing or Google. However, this part
of web data lack rich contextual information and various
viewpoints [3, 18] with respect to a given object term.

• Photo sharing images: the last source is the massive diver-
sified images taken by many people and directly posed to
photo sharing sites like Flickr. These images are more natural
and less biased than those from the search engines [7, 18, 32].
However, crawling this part of web images can easily include
a lot of noisy or irrelevant images with respect to a given
object term.

By bridging some technical gaps, it is feasible to integrally lever-
age their strengths to eliminate human involvement in data prepa-
ration.

Therefore, according to our insights above, we propose a fully-
automatic training dataset preparation mechanism for detection mod-
els of any objects. It takes text terms describing any objects as inputs
and auto-prepares a large training dataset for the detection task of
these objects from scratch in the real world. Under the hood, our
mechanism combines three web sources to form hybrid implicit
supervision, which can be an alternative to explicit human super-
vision. We also address three challenges in the mechanism design
so that we can bridge the technical gap in such web-based implicit
supervision. First, we augment the human-oriented image search
engines with a better ability to serve auto AI training. Second,
we design an auto-pruning method of noisy samples, which are
inevitable to photo sharing images, in preparing our datasets. Last,
we propose an algorithm to auto-condense our prepared datasets,
making the representative power of our picked images close to that
of expert-picked ones.

To demonstrate the power of our mechanism, we build a tool
for the scenario of arbitrary object detection. The input of this

tool is text terms of any objects, and its output is a ready-to-use
detector of those objects. This tool applies ourmechanism to guide the
data preparation and uses the Weakly Supervised Object Detection
(WSOD) models [1, 15, 24, 29] as object detectors in the subsequent
training. Typically, the WSOD models convert the detection task to
a bag classification task and implicitly learn the selection of object
proposals. Therefore, the image-level labels are enough (with no
need for bounding box labels). TheWSODmodels could also handle
cases where multiple instances from multiple categories exist in a
single image. The tool above answers our feasibility question and
provides the detection freedom of object categories.

Compared to manual approaches, our mechanism could save
lots of time in image collection and annotation during the dataset
construction. Moreover, compared to benchmark datasets released
several years ago, it inherits the evolutionary nature of the web
content, to easily adapt to essential changes of the same object, e.g.,
the changes in computer monitors from the 1990s to the 2010s, and
timely cover newly emerging objects like the SpaceX Star Ship.

As to the training data quality, extensive experiments show
that the WSOD detectors trained with datasets prepared by our
auto mechanism are comparable to those trained with benchmark
datasets like PASCAL VOC [7] or MS COCO [18] and outperform
other baselines.

How does ourmechanism behave in real use? Especially for those
object categories not in the benchmarks. To answer this question,
we choose several challenging object categories that could not be
found in the existing benchmark datasets for evaluation.We prepare
a training dataset with our mechanism for these categories, and
the results of the trained WSOD detectors further demonstrate the
generalization and the practicability of our mechanism.

In this work we make the following contributions:

• We design a fully-automatic training dataset preparation
for arbitrary object detection. We propose and take into
consideration three important metrics of prepared datasets
with respect to the target object: relevance, naturality, and
balance. These metrics ensure the overall quality of prepared
datasets.

• We discover three unique opportunities of information re-
sources on the web, which offer indirect hidden supervision
for the purpose of data preparation. We propose a mecha-
nism to build an alternative to explicit human supervision
in preparing high-quality object-specific training datasets,
which could be an inspiration for more works toward fully
autonomous deep learning in the real world.

• Extensive experiments demonstrate that the quality of train-
ing datasets prepared by our mechanism is comparable to
those benchmarks and outperforms baselines. Furthermore,
we evaluate our mechanism on several challenging out-of-
benchmark object categories and the results demonstrate its
generalization.

2 APPROACH
In this section, we present the design intuition, pipeline procedure,
and algorithmic modules of our auto training dataset preparation
mechanism for weakly-supervised object detection models.
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Figure 2: Overall workflow for our approach. Three green boxes are algorithmic modules. The corpora data resource is included
in the keyword expansion module and not shown separately here.

Figure 3: Top-5 query results from Bing with keywords “dog”
and “mountain dog”. Top: search results with “dog”, Bottom:
search results with “mountain dog”.

2.1 Design Intuition
Web photo sharing sites like Flickr are the data sources for popu-
lar benchmark datasets like PASCAL VOC or MS COCO because
they can provide massive non-iconic and naturally-distributed im-
age candidates [7, 18, 32]. However, those candidates have to be
dedicatedly annotated by experts in order to ensure the dataset
quality. When switching to the auto mode, we need some implicit
supervision as an alternative for this job.

We discover that image search engines might be well suited for
such a purpose if some technical gap can be bridged. For a given
object description, as shown in Figure 3, image search engines like
Bing or Google can provide accurate iconic images, especially in
their top-ranked results [3]. Those images are manually picked and
posted online to effectively convey information, containing hints of
the hidden supervision in a canonical perspective. However, image
search engines are human-oriented so that the users can learn a
good appearance sketch of any object via various queries. Thus,
we have to support two new functions so that it is feasible to build
implicit supervision on top of the image search engines. One is to
automatically query the engine like a human user to obtain iconic
images of the target object in various semantic aspects, while the
other is to extract the implicit hints in those samples to form a
“reference” on how to filter out noisy samples from Flickr images
like an expert.

Please note that we cannot directly prepare the training dataset
from scratch only with the returned results of the image search
engines. It is because most returned images are biased - often a
single object instance centered in a clean background. They lack
rich contextual information and various viewpoints (as shown in
Figure 1 and Figure 3), which are critical to the model generalization.

2.2 Pipeline Procedure
Given the text name of the target object, the whole pipeline of our
mechanism can automatically crawl, select, and refine the image

data from the web, and finally outputs a dataset for training a
weakly-supervised object detector for the target object.

(1) As shown in Figure 2, the pipeline first uses the keyword
expansionmodule to collect a small set of “reference” images
representing various aspects of the target object, under the
hints provided by the large language model derived from the
web corpora.

(2) Next, it crawls massive images from the photo sharing sites
as the candidate data for the training dataset. And we design
the de-noising module to prune out low-quality or even
undesired candidate data with help from the “reference” data
provided in the first step.

(3) As the last step, the pruned clean data is sent to the balancing
module for further pruning with a condensation procedure
concerning the image representative power. The output of
this module is ready to be used in the weakly-supervised
object detector training.

2.3 Algorithmic Modules
In the above pipeline procedure, there are three key modules that
address three challenges of the hybrid implicit supervision we
aim to provide through our auto preparation mechanism. They
substantially improve the data quality of auto-prepared training
data, which in turn delivers accurate training results. Therefore,
supported by these three modules, the hybrid implicit supervision
from the web could replace the human supervision efforts and give
the freedom of picking an arbitrary object term as the target, as
long as the knowledge and data of this object term are recorded
and indexed online. We elaborate as follows on these three module
designs and how they resolve challenges, respectively.

2.3.1 Module1: Keyword Expansion. In this module, in order to
improve data relevance and naturality, we manage to make the
implicit supervision from search engines more suitable for our data
preparation mechanism.

Challenges. One would like to obtain detectors that should be
generalizable. For example, when some person expresses a desire
to obtain a detector about dogs, this person may expect that the
obtained detector has the ability to detect different breeds of dogs
and also dogs in different environments. While top images returned
by the image search engines are semantically accurate, they are
aforementioned often biased and even similar when the search term
is as simple as an object name. The proposedmethods should be able
to expand the object term to various meaningful and natural terms
at a more fine-grained level, in order to obtain a representative
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image portfolio of the target object, which will be the important
“reference” in the de-noising module.

Module design. The keyword expansion module seeks help from
web corpora resources like the English Wikipedia or BookCor-
pus [42]. These corpora are organized in a collaborative learning
way and contain natural language utterances of almost all object
categories. This module exploits the knowledge in them through
large language models pre-trained over these corpora. For the tar-
get object type, it first predicts the related context information
(co-occurrence objects or background) and then predicts proper
variants. In this way, our mechanism is able to get from the image
search engines the relevant and diversified search results with re-
spect to any target object, which could be used as the “reference”
sample set in the next de-noising stage.

At the core of the keyword expansionmodule is the prompt learn-
ing technology. With the development of large pretrained language
models in Natural Language Processing (NLP), such as ELMo [21],
BERT [6], GPT [22], RoBERTa [20], etc., prompt learning [19] - as
a new learning paradigm - has gained increasing attention recently.
In prompt learning, we do not need to train a model between input
𝒙 and output 𝒚 like traditional supervised learning, or adapt the
language model to downstream tasks by fine-tuning. Instead, with
a large pretrained language model 𝑃 , we can directly model the
probability 𝑃 (𝒙 ;𝜃 ) of 𝒙 , then we can predict 𝒚 with this probability.
In this process, we do not have to prepare any extra training data
manually.

Specifically, we design a cloze prompt for our keyword expansion
task. We take the object category name like “dog” as the 𝒙 , and 𝑃
as the pretrained language model. 𝒙′ is the template prompt string
with unfilled slots. For each unfilled slot in 𝒙′, we employ the results
with top-k probability predicted by 𝑃 and get outputs 𝒆, then we
fill 𝒆 into 𝒙′ and get the expanded keywords 𝒚. Formally,

𝒆 = argmax
𝒆∈E

(𝑃 (𝑇 (𝒙′, 𝒆);𝜃 ), 𝑘), (1)

where 𝒆 is values that can be filled in the slots and E is set of all
possible values. 𝑇 is the operation of filling 𝒆 into the prompts 𝒙′.
𝜃 stands for the parameters of the pretrained language model.

Moreover, to improve the naturality of searched image distribu-
tion, the expansion strategy in our template prompt 𝒙′ considers
two dimensions. We describe them in detail as follows,

• Proper co-occurrence objects or background informa-
tion of the target object.Wewant to discover some natural
co-occurrence objects or background information for the ob-
ject term. Take the object name “dog” for instance. We design
a prompt shaped like “dog [PREPS] [MASK]”, where “[MASK]”
denotes an unfilled slot, and “[PREPS]” stands for some com-
mon prepositions of orientation like “in”, “on”, “under”, and
“over”, etc. Some expanded results are like “dog in the park”,
“dog on the ground”, etc. More details for “[PREPS]” can be
found in the experiments section.

• Proper variants of the target object. Also with the object
name “dog” as an example, we expand to find some natural
variants for this object term by adding an unfilled slot token
before it, like “[MASK] dog”. Some results are “barking dog”,
“mountain dog”, etc.

Cleaner

Noisier

Figure 4: Our observation for photo sharing images. Cluster-
ing results of “aeroplane” images are employed as an example.
Top side: clusters with higher intra-similarity. Bottom side:
clusters with lower intra-similarity.

With the original search terms expanded following a natural dis-
tribution, we then exploit them to query the image search engines
to obtain accurate, diversified, and natural returned images. These
images could provide a “reference” to the next de-noising module
for better dataset relevance and naturality.

2.3.2 Module2: De-noising. In this module, we utilize a clustering-
based de-noising method with implicit supervision from the afore-
mentioned “reference” data, aiming to improve the relevance of our
candidate dataset of the photo sharing images.

Challenges. Photo sharing sites like Flickr provide massive non-
iconic images uploaded by various amateur photographers. The
image sampling of an object on them, although noisy by nature,
approximately represents the natural distribution of their occur-
rences in the real world [7, 18]. The popular benchmarks [7, 18]
use those data with experts manually improving the data quality.
When removing the human efforts, we design an algorithm based
on the observation below, in order to prune out noisy or low-quality
images.

Observation: due to the randomness and dispersion of noisy
data in the real world, for clustering results of photo sharing
images, cleaner clusters tend to have higher intra-cluster sim-
ilarity, while noisier clusters have the opposite. As illustrated in
Figure 4, it could be found that clusters with higher intra-similarity
tend to be cleaner, while clusters with lower intra-similarity tend
to contain more noisy samples. This observation is important for
our design of the de-noising module.

Module design. In a nutshell, we first crawl from the photo shar-
ing site a large number of images tagged with the target object term.
According to the observation above, we then group images into
different clusters and calculate a score for each image. This score
consists of two parts, (i) an intra-cluster similarity measure, and (ii)
a similarity measure to the aforementioned “reference” set. In the
end, we sort candidate images according to their scores and pick the
top ones to obtain a relatively clean dataset without manual effort.
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Figure 5: Illustration for our balancing module. The dash lines in the fully-connected graph represent masked edges by 𝜖. And
connected components covered with color are detected as redundant.

In the following, we explain how the de-noising module extract
features and compute this image score.

First, given a photo sharing image 𝐼𝑖 ∈ I, we get its feature 𝐹𝑖 ,
through a pretrained CNN backbone. For the feature of a “reference”
image, i.e. 𝐼𝑖 ∈ I𝑟𝑒 𝑓 , we denote its feature as 𝐹ref,𝑖 .

With the extracted features, we then can calculate the two parts
of similarity measures for each image. For a cluster 𝐶𝑡 , one of the
clusters provided by our clustering algorithm in the de-noising
module, we can compute the intra-cluster similarity of 𝐶𝑡 as

𝑆𝑡intra =
1

|𝐶𝑡 |2
|𝐶𝑡 |∑︁
𝑖=1

|𝐶𝑡 |∑︁
𝑗=1

𝑓sim (𝐹𝑖 , 𝐹 𝑗 ), (2)

where |𝐶𝑡 | is the image number of 𝐶𝑡 , and 𝑓sim is the cosine simi-
larity function. And for 𝐼𝑖 ∈ 𝐶𝑡 , 𝑆intra,𝑖 = 𝑆𝑡intra.

We also compute the similarity measure of 𝐼𝑖 to the “reference”
image set, 𝑆ref,𝑖 , as

𝑆ref,𝑖 =
1

|Iref |

| Iref |∑︁
𝑗=1

𝑓sim (𝐹𝑖 , 𝐹ref, 𝑗 ), (3)

where |Iref | denotes the number of the “reference” image set.
Then the final similarity score of a photo sharing image 𝐼𝑖 , 𝑆final,𝑖 ,

is computed as

𝑆final,𝑖 = 𝛼 · 𝑆intra,𝑖 + (1 − 𝛼) · 𝑆ref,𝑖 , (4)

where 𝛼 is a trade-off coefficient. The de-noising module delivers
the image 𝐼𝑖 to the balancing module if its similarity score is above
an empirical threshold 𝛽 , i.e. 𝑆final,𝑖 ≥ 𝛽 .

2.3.3 Module3: Balancing. In this module, we employ a balanc-
ing metric to improve the representative power of the prepared
dataset and design a graph-based sparsification algorithm for such
a purpose. We illustrate this module in Figure 5.

Challenges. Balance is one of the most important criteria to de-
termine the quality of a dataset. Unbalance or redundancy in the
dataset will affect both the performance and efficiency of corre-
sponding model training. However, it is challenging to balance the
dataset without expert assistance. We need to design an automatic
method to identify those redundant data and selectively remove
them from the prepared dataset.

Module design. We design a balancing module that can condense
the size of the prepared dataset with the improved uniformity of
the sample distribution, achieving the balancing objective. The
strategy in our data balancing shares a similar principle with those

contrastive learning methods [10, 14, 36] which are for extracting
high-quality feature representations. Our strategy is to properly
remove redundant images so that the images remained are pushed
further apart in a balancing score perspective.

Specifically, we first project all images refined by the de-noising
module onto the surface of a unit hypersphere which generally
models the sampling distribution of the target object. Based upon
this modeling, we can then design an overall balance score function
of the prepared dataset,

𝑆balance (I) ≜ 𝑒
−
[∑

𝐼𝑖 ∈I
∑

𝐼 𝑗 ∈I ∥𝑁𝑖−𝑁 𝑗 ∥22
]
, (5)

which is modified from the uniformity metric in [36]. In 𝑆balance (I),
for each image 𝐼𝑖 ∈ I, 𝑁𝑖 is the feature normalized from 𝐹𝑖 . 𝑆balance
measures how uniform all image features are on the surface of a
unit hypersphere. And the smaller 𝑆balance is, the better balance
our prepared dataset could maintain.

To calculate 𝑆balance (I), we construct a distance based fully-
connected graph 𝐺full. On this graph, a node 𝑖 stands for image 𝑖
in the dataset, and its node feature is 𝑁𝑖 ; each edge feature 𝒆𝑖, 𝑗 is
calculated by 𝒆𝑖, 𝑗 = 𝑒−∥𝑁𝑖−𝑁 𝑗 ∥22 . In this way, the balance score of
I can be transformed into

𝑆balance (I) =
1
|E |

∑︁
𝒆𝑖,𝑗 ∈E

𝒆𝑖, 𝑗 , (6)

where E is the edge set of 𝐺full, and I is the image set used to
construct 𝐺full.

In the next, we provide a graph based sparsification method to
execute our data balancing strategy, while ensuring a reasonable
dataset size. We leverage an epsilon-based sparsification method to
indirectly control the budget of the removed node/image number.
Its objective is to optimize

argmin
𝜖

(𝑆balance (Isp) +
𝜆 · |I |��Isp�� ), (7)

where Isp is the image set after sparsification. 𝜖 is the controlling
threshold. 𝜆 is a scaling coefficient.

Specifically, as shown in Figure 5, the balancing module masks
off (remove) the edges in E smaller than 𝜖 , which is calculated
according to Equation (7). It then discovers the connected compo-
nents in the new graph and considers that redundancy exists inside
a component (refer to examples marked in color in Figure 5). It then
collapses each connected component into a single node, by only
keeping nodes/images with the highest 𝑆final,𝑖 , to derive the final
balanced image set Isp.
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3 EXPERIMENTS
In this section, to evaluate our approach, we build an object detector
generation tool, in which the core part is our auto training data
preparation mechanism. This tool takes as input text terms describ-
ing objects and automatically returns a ready-to-use object detector
as the output. No human efforts like data collection and annotation
are required. Thus, we can evaluate our approach by evaluating the
performance and generalization of the object detector generated
by this tool.

3.1 Experiment Setup
Settings of our mechanism. For the pretrained language model in

our keyword expansion module, we use RoBERTa [20], a popular
pretrained language model. For the orientation preposition tokens
“[PREPS]” in our cloze prompt, we use {in, on, under, over, behind,
before, inside, outside, near}. We employ Bing as the image search
engine to crawl images as the “reference” in the de-noising module.
For each object category, the search engine image number is set
to 300. The probability of each expanded keyword determines the
proportion of the collected images from the image search engine.
We denote datasets auto-prepared with our mechanism according
to VOC and COCO categories as Ours-VOC and Ours-COCO,
respectively. We crawl 2,000 images for each category from Flickr
by using the category names as the search keywords. Overlapped
images with benchmark datasets are removed from our datasets
prepared. Considering privacy and copyright, we only collect public
data with proper licenses. In the end, we get 78,988 images for Ours-
VOC and 155,728 images for Ours-COCO.

Weakly supervised object detection model. For the weakly super-
vised object detection (WSOD) model used in our tool, we employ
WSDDN [1], an end-to-end CNN-basedWSODmodel. WSDDN first
employs object proposal generation algorithms like EdgeBox [43]
to generate proposals for each image. Then WSDDN transforms
the object detection task into a classification task, where object
proposals in an image are regarded as a bag and WSDDN learns for
this bag classification task. In this process, WSDDN could implicitly
learn the selection of object proposals to accomplish the detection
task. Moreover, WSDDN contains a spatial regularizer that makes
spatially highly-overlapped object proposals share similar features.
With prepared high-quality training datasets, WSDDN could han-
dle cases where multiple instances from multiple object categories
exist.

Hyperparameter. In our experiments, the learning rate, weight
decay, and batch size are 1𝑒−5, 5𝑒−4, and 1, respectively. We use
Adam [16] as the optimizer and EdgeBox [43] as the object proposal
generation algorithm. For an image, the maximum number of object
proposals used is 2,000. K-means is employed as our clustering
algorithm and K is set to 10. We use VGG16 [27] with weights
pre-trained on ImageNet [5] as the backbone of the WSDDN. We
set the regularizer coefficient in WSDDN to 1𝑒−3. In the de-noising
module, 𝛼 is set to 0.5, and 𝛽 is set to 0.7. In the balancing module,
𝜆 is empirically set to 0.1. The threshold of the NMS module used
in the test is set to 0.4.

Hardware information. We run our experiments on a single PC
with four NVIDIA TITAN Xp GPUs. WSDDN1 is implemented with

PyTorch 1.10.0. The OS we used is Ubuntu 16.04.4 LTS, and the
version of CUDA is 10.2.

Evaluation metric. When evaluating in the test sets of bench-
marks, for VOC, we employ Average Precision (AP) and mean Av-
erage Precision (𝑚AP) as evaluation metrics, with a standard 50%
Intersection-over-Union (IoU). For COCO, we employ the standard
COCO evaluation metrics AP and𝑚AP of different IoU thresholds.

3.2 Comparison with Benchmarks
To show the data preparation quality, we compare our auto-prepared
datasets with train sets of benchmark datasets: PASCAL VOC2007,
VOC2012 [7], and MS COCO [18], which are manually prepared.
For VOC2007, as shown in Table 1, the performance of the detector
trained with Ours-VOC (32.2%) is comparable to the detector trained
with VOC07 trainval split (32.5%). Furthermore, for VOC2012 eval-
uation results in Table 2, it could be found that object detectors
trained on Ours-VOC (29.2%) and VOC12 trainval (29.4%) performed
comparably. For COCO, as shown in Table 3, the performance dif-
ference of𝑚AP50 between Ours-COCO and COCO train2017 (13.5%
vs. 13.8%) is also small. These results demonstrate the effectiveness
of our mechanism and the overall high quality of the auto-prepared
dataset.

Among these results, we notice that in Table 1 the AP50 of
“TV/Monitor” of Ours-VOC is significantly lower than the VOC train-
val split (29.5% vs. 46.1%). After an inspection at the data level, we
find that themain reason is that in the VOC07 test split, “TV/Monitor”
images are old TVs and monitors produced before 2007, which have
changed a lot by the time we collect the data. This illustrates that
our approach has inherited the evolutionary nature of the web and
allows for a wider range of applications. In later experiments, we
also prove that the detector trained from our mechanism can work
well to detect “old monitor” and “monitor”.

3.3 Comparison with Baselines
We compare Ours-VOC and Ours-COCO with three baselines: (i)
Flickr-VOC [26]: containing raw images directly retrieved from
Flickr, with category names of PASCAL VOC as queries, the first
4,000 search results are kept for each category. It contains 83,905
images in total; (ii) Flickr-COCO [26]: similar to Flickr-VOC, with
category names of MS COCO as queries and contains 335,327 im-
ages in total; (iii) Flickr-clean [37]: containing 41,625 images in
total, it is constructed from Flickr with PASCAL VOC categories,
then a salient object detection method [35] and a saliency-cut seg-
mentation method in [4] are employed to remove noisy images and
keep relatively simple images.

As shown in Table 1, when evaluated in the VOC07 test split,
Ours-VOC (32.2%) outperforms Flickr-VOC (27.6%) and Flickr-clean
(28.8%). For evaluation results in the VOC12 test split in Table 2,
Ours-VOC (29.2%) also outperforms Flickr-VOC (24.1%) and Flickr-
clean (24.8%). And for COCO, as shown in Table 3, Ours-COCO
(13.5%) outperforms Flickr-COCO (7.0%) in terms of𝑚AP50. These
results further demonstrate the effectiveness of our mechanism.

1We run our own implementation of WSDDN in PyTorch in our experiments.
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Table 1: Comparisonwith PASCALVOC2007 and other baselines. Formodel training on all datasets, only image-level annotations
are used. AP50 (%) is used as evaluation metric. VOC 2007 test split is used for evaluation.

Datasets Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Motor Person Plant Sheep Sofa Train TV Average

Comparing with PASCAL VOC 2007

VOC07 trainval 40.1 39.2 26.2 20.7 12.0 54.7 42.5 37.7 2.3 35.0 32.7 38.5 41.0 50.8 13.6 12.8 29.9 34.9 39.3 46.1 32.5

Comparing with other baselines

Flickr-VOC 35.8 39.5 35.8 9.6 10.0 51.5 39.5 41.3 7.1 22.4 7.4 31.0 33.4 47.3 13.0 9.2 32.7 27.5 44.6 14.2 27.6
Flickr-clean 42.7 29.5 21.4 23.8 9.4 45.9 44.5 39.9 9.7 23.3 24.0 41.1 39.3 40.2 15.9 10.8 23.3 33.3 37.1 21.0 28.8

Ours-VOC 43.5 36.4 27.2 27.8 10.8 53.4 43.7 40.1 8.8 33.4 25.5 35.8 38.0 44.3 15.9 12.3 28.5 45.6 43.5 29.5 32.2

Table 2: Comparison with PASCAL VOC2012 and other base-
lines. For model training on all datasets, only image-level
annotations are used. AP50 (%) is used as evaluation metric.
VOC 2012 test split is used for evaluation.

Datasets Average

VOC12 trainval 29.4

Flickr-VOC 24.1
Flickr-clean 24.8

Ours-VOC 29.2

Table 3: Comparison with MS COCO. For model training on
all datasets, only image-level annotations are used.𝑚AP (%)
with different IoUs is used as the evaluation metric. COCO
val2017 split is used for evaluation.

Datasets IoU=0.50 IoU=[0.50:0.95] IoU=0.75

COCO train2017 13.8 5.7 3.8

Flickr-COCO 7.0 3.1 2.3

Ours-COCO 13.5 5.5 3.8

3.4 Qualitative Results
Here, we show the intermediate results of each module in our mech-
anism as follows, to help understand how the whole mechanism
works.

• For the keyword expansion module, we show the keyword
expansion results of category “dog” in Figure 6a. (i) For co-
occurrence objects or background information: we could
find that this module could make some natural and valu-
able discoveries, such as the “park”, “ground”, “floor”, etc.
And it could also find some less obvious but equally rea-
sonable co-occurrence objects or backgrounds like “leash”,
“sidewalk”, “corner”, etc. These expansions are valuable for
our mechanism from the perspective of comprehensiveness
and robustness. (ii) For variants of “dog”: this module also
gives some common and natural variants like “barking dog”
and “mountain dog”. It also outputs some other inspiring and
reasonable variants including “mad dog”, “guide dog”, etc.

• For the de-noising module, we show the clean and noisy
outputs of “aeroplane” in Figure 6b. For noisy samples in the
bottom, we could find that they actually could be divided
into several different types: (i) the image contains only part

Table 4: Ablation experiment
results of our tool. We use
VOC 2007 test split for evalu-
ation, with𝑚AP50 (%) as the
evaluation metric.

Datasets 𝑚AP50

Variant-A 30.4
Variant-B 28.3
Variant-C 31.0

Variant-D 29.7

Ours-VOC 32.2

Table 5: Results of our tool
on out-of-benchmark object
categories.We use AP50 (%) as
the evaluation metric.

Categories AP50

Old monitor 52.8

Monitor 53.7

Dinosaur 24.0

Starship 32.5

Wall-E 46.3

Average 41.9

of target objects; (ii) the image describes another object type;
(iii) the object type is correct in the image, but not real-world
objects. These typical noisy samples filtered out by our de-
noising module further demonstrate the effectiveness of our
mechanism.

• In Figure 6c, we show the redundant connected components
in the image graph for “aeroplane” in the balancing module.
We could find that images in a same color box have a high
degree of similarity, and this module could condense them
to improve the representative power of the prepared dataset.

3.5 Ablation Study
We mainly conduct ablation experiments for variants of Ours-VOC
as follows: (i) Variant-A: we remove our keyword expansionmodule;
(ii) Variant-B: we remove our de-noising module; (iii) Variant-C:
we remove our balancing module; (iv) Variant-D: we replace our
de-noising module with the mixup de-noising method in [26]. As
illustrated in Table 4, removing the keyword expansion, de-noising,
or balancing module in our approach will cause a performance drop,
especially the de-noising module, which causes a 4% drop of𝑚AP50.
And if we compare the Variant-D (29.7%) and Ours-VOC (32.2%), it
could be found that our de-noising module performs better than
the mixup method. These results demonstrate the superiority and
necessity of the modules in our approach.

3.6 Detection of Out-of-benchmark Objects
To prove the effectiveness of our mechanism in real scenarios, we
choose some challenging object categories out-of-benchmark, i.e.,
Old monitor, Monitor, Dinosaur, SpaceX starship, and Robot Wall-E.
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(a) Example keyword expansion results for “dog” with prediction prob-
ability. Left: related context information (co-occurrence objects or back-
ground) for “dog”. Right: variants of “dog”.

(b) De-noising module outputs for “aeroplane”. Top: clean results.
Bottom: noisy results.

(c) Balancing module outputs for “aeroplane”. Images in a same
color box are seen as redundant.

Figure 6: Qualitative results for three modules in our mecha-
nism.

The selected categories include ancient objects (Dinosaur), objects
that appear in the recent one or two years (SpaceX starship), virtual
objects from films (Robot wall-E), and variations of the same kind
of objects in different eras (from Old monitor to Monitor). Since no
existing datasets are available for evaluation, for each category here,
we crawled 300 images from Bing and 1,500 images from Flickr.
And we manually annotated 200 Flickr images as the test split
(the rest for trainval). The settings or hyperparameters have been
introduced in the experiment setup. Detection results visualization
and performance are shown in Figure 7 and Table 5, respectively.
These results demonstrate the effectiveness and adaptability of our
approach in practical usage.

3.7 Search Engine Impact
We have explained the purpose of introducing search engine images
and their bias in the design intuition (Section 2.1). For experiments
here, we aim to explore the search engine impact by comparing
the performance of two common image search engines, Bing and
Google, through experiments on our out-of-benchmark data. As
shown in Figure 8, the𝑚AP50 values of Bing and Google are close

to each other. This proves that our mechanism is not restricted to a
particular image search engine.

In addition, though the search engine images are more accurate
compared to those photo sharing images, they may also contain
some fake images or human bias. We explain how this problem is
solved in our mechanism. First, as mentioned in Section 2.1, we
do not use images from search engines directly but as a reference.
Second, we choose top-ranked images with better data quality in
the searched results as the reference images. At last in Equation (4),
in addition to the reference similarity score 𝑆ref,𝑖 , we also consider
the intra-cluster similarity score 𝑆intra,i, which is not affected by
biased or fake images from search engines. And we use the whole
reference image set for the calculation of 𝑆ref,𝑖 to control the impact
of a few outliers. In this way, we could solve the problem of biased
or fake images from image search engines.

3.8 Sensitivity Analysis
We conduct an analysis of two important parameters in our mecha-
nism: 𝛼 and 𝜆. 𝛼 is mainly used in the de-noising module for the
trade-off between 𝑆intra,𝑖 and 𝑆ref,𝑖 in Equation (4), and 𝜆 is a scal-
ing coefficient to adjust the effect of the number of images in the
balancing module.

As shown in Figure 9, for 𝛼 , combining 𝑆intra,𝑖 and 𝑆ref,𝑖 is benefi-
cial to improve the overall performance. Using either of them alone
(when 𝛼 is set to 0 or 1) will cause a performance drop. For 𝜆, when
it is extremely low (1𝑒−5), the redundant connected components
will be very large, making the vast majority of images discarded,
therefore the𝑚AP is close to 0. And vice versa, when 𝜆 is too large
(0.5), most images have remained and the redundancy of the dataset
will increase, which also causes a performance drop. These results
illustrate that it is helpful to choose proper values for 𝛼 and 𝜆 during
practical use.

4 RELATEDWORK
This paper is mainly related to web-based automated dataset prepa-
ration and weakly supervised object detection.

Webly automated dataset preparation. In recent years, larger
datasets and benchmarks [7, 17, 18, 25] have been released for bet-
ter evaluation, more powerful models, and broader applications.
These datasets are constructed with a web-based image collection
in conjunction with labor-intensive manual annotations. In compar-
ison, webly automated dataset preparation could be more efficient,
large-scale, and cost-friendly. Taking the object detection task as an
example, images of arbitrary object categories can be collected from
the web and used for dataset preparation automatically. Existing
works mainly focus on how to reduce the impact of noisy data and
can be mainly divided into two parts: (i) general web-based datasets
for classification, object recognition, etc. (ii) web-based datasets for
object detection. For (i), works like [8, 9] use re-ranking methods to
handle noisy images. In contrast to directly determining whether
an image is noisy or not, works like [13, 39] employ clustering
to group similar images first and then handle noisy images. For
(ii), [26] directly crawl images from the web with object category
names as keywords. And then a mixup data augmentation method
is exploited to reduce the impact of images not containing target
object instances.
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Figure 7: Detection results visualization for object categories out-of-benchmark.
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Figure 8: Image search engine comparison of Bing andGoogle
with our out-of-benchmark data. AP50 is used as the evalua-
tion metric.
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Figure 9: Parameter sensitivity analysis of 𝛼 and 𝜆 on our out-
of-benchmark data.𝑚AP50 is used as the evaluation metric.

Weakly supervised object detection. Traditionally, object
detection models [2, 11, 12, 23] require training images with bound-
ing boxes for the supervised signal of localization. However, it is
extremely costly or labor-intensive to get bounding box annota-
tions for large-scale datasets. Therefore, Weakly Supervised Object
Detection (WSOD) methods [1, 15, 24, 29, 30, 34, 38, 41] are pro-
posed where training data with image-level category labels are
sufficient. These works mostly abstract the object detection task as
a multi-instance learning task. Specifically, WSOD methods first
generate object proposals for each image with some traditional
object proposal generation algorithms like SelectiveSearch [33] or

EdgeBox [43]. Then, they take the object proposal set in each image
as a bag and transform the object detection task into a bag classi-
fication task. In such a classification task, WSOD methods could
implicitly learn the selection for the correct proposals.

Among these works, WSDDN [1] is a CNN-based end-to-end
learning architecture for WSOD, which employs a spatial regular-
izer to make spatially highly-overlapped object proposals share
similar features. Based on this work, works such as [28, 29] add in-
stance classifiers to make highly-overlapped object proposals share
similar label information. And then [24] uses a more sophisticated
self-training method and a modified drop block method to solve
the part domination problem. Besides, other methods also obtain
improvements by leveraging the attention mechanism [15], object
instance mining [40], etc.

5 CONCLUSION
In this work, we design a fully-automatic training dataset prepa-
ration for object detection with web resources. The preparation
process takes into account the relevance, naturality, and balance of
prepared datasets. The object detectors trained with our prepared
datasets outperform baselines and have comparable performance
to those trained with public benchmarks. With our auto prepara-
tion mechanism, the object detection models can be set free from
limited object categories in the public benchmarks, accelerating
their applications in practice.
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