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Abstract—Binary analysis is pervasively utilized to assess
software security and test vulnerabilities without accessing source
codes. Its analysis accuracy is heavily influenced by the inferring
ability of information related to the code compilation. Among the
compilation information, compiler type and optimization level,
as the key factors determining how binaries look like, are still
difficult to be inferred efficiently with existing tools. In this
paper, we conduct a thorough empirical study on the binary’s
appearance under various compilation settings and propose a
lightweight binary analysis tool DIComP to infer the compiler
and optimization level according to our study observations. Our
comprehensive evaluations demonstrate that DIComP is effective
in inferring the optimization levels with up to 90% accuracy, and
it is also efficient and lightweight to infer thousands of binaries
in millisecond class with 1MB model.

Index Terms—Binary Analysis, Compilation Options, Opti-
mization Level

I. INTRODUCTION

The security community has been putting many efforts
into designing binary analysis techniques, e.g., vulnerability
retrieval [1], reverse analysis [2], [3], and vulnerability repro-
duction [4], [5]. Continuously improving the performance of
the analysis techniques is a demanding requirement to protect
system security. These techniques commonly take the semantic
and structural information (e.g., control flow or data flow) from
the binary as input, extract specific features, and perform the
analysis. They assume that the features extracted from binary
are mainly determined by the program’s logic. However, we
hold that the binary’s appearance (i.e., the initial state of the
binary code) is determined by both the program itself and
the compilation options together. Neglecting the impact of the
compiler may impede the effectiveness of the above tasks.

We investigate the following tasks and find that their results
are considerably enhanced by taking into account the prove-
nance of compiler and optimization level. ❶The basic block
level binary comparison [6], [7] can not achieve a good result
on binaries compiled at different optimization levels. Indeed,
we find that twice as many basic blocks are generated at -O0
as -O3. So it would be better for us to identify the optimization
level of the binaries first, and then we can retrieve the target
binary [1] in the corpus. ❷And the same instruction under
different compilation options may refer to different types of
variables, which can affect the accuracy of type inference [8],
[9]. ❸What’s more, Mu [4] shows that vital information is
always missing to reproduce the vulnerabilities in the real
world. We can figure out the program configurations [10] with

much higher confidence when holding the compilation options.
The evidence above motivates our work, and the tasks above
will be elaborated in Section II.

According to the investigation above, we find that the type
of the compiler and the level of optimization have a significant
impact on the binary analysis, which will also be reflected in
the binary’s appearance. To verify how they influence the ap-
pearance, we conduct a comprehensive analysis. Binary code
is hard to understand directly. By utilizing the disassembler
IDA Pro [11], we can transform the binaries into assembly
code. With the help of the distribution of mnemonics and
registers, we can figure out some differences (e.g., -O1 of GCC
uses more callq frequently than other optimization levels).
Fortunately, some works [12], [13] leverage deep learning to
identify the function boundary of binaries, which bring us a
new feature — function length to measure the appearance.
The result shows that the average function length of -O3 is
longer than -O2 of GCC, which may be caused by some loop
unrolling optimization options.

To scope our study, we comprehensively study the appear-
ance of different compilers (GCC, Clang), optimization levels
(-O0, -O1, -O2, -O3, -Os), and compiler versions (5 main
versions for GCC, 7 main versions for Clang). According to
the observation from the study, we develop a lightweight tool
called DIComP (Data-driven Inference of binary Compiler
Provenance). By leveraging the distribution of mnemonics,
registers, and function length, we can distinguish the compilers
and infer the optimization levels with high accuracy. Unfortu-
nately, due to the high similarity between different compiler
versions, we just classify the part of GCC versions and can
do less with the versions of Clang.

The main contributions of our work are as follows:
1. We comprehensively study how the different compilation

options influence the appearance of binaries in terms of
mnemonic, register, and function length. (Section III)

2. We design and implement a lightweight and efficient
system called DIComP, which can infer the provenance of
compiler and optimization level. (Section IV)

3. We accomplish a comprehensive evaluation of a wide
range of applications, and the result shows great performance
on accuracy and processing speed. (Section VI)

II. MOTIVATING EXAMPLES

In this part, we show three motivation examples to illustrate
how compilation options affect the binaries’ appearance.



Case 1: Binary Similarity. Binary similarity analysis [14],
[15] aims to measure the similarity between pairs of binaries
[1], [6], [7], which is often used in malware detection [1].
A precise similarity measurement can bring better detection
results. Here, we experiment with a widely-used similarity-
measurement tool BinDiff [7]. As shown in the Figure 1,
we cross-compare the binaries compiled from libxml with
25 different combinations of compilation options (5 versions
of GCC × 5 optimization levels). Figure 1a) presents the
overall result, and Figure 1b) elaborates the result in the same
compiler version. The darker the grids, the more similar they
are and vice versa. It shows that the optimization level has a
great impact on the binary similarity comparison, while the
version has less influence.
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Fig. 1: Similarity of binaries compiled from the same source code
with different optimization levels.
Case 2: Type Inference. Type inference [8], [9] aims to
reconstruct the variables’ types from the binary code, which
is a requirement of reverse engineering [3]. Existing type
inference efforts do not take into account the impact of the
compilation, and we find that ignoring the compiler’s impact
can affect the inference result. For example, the instruction
’lea 0xOFFSET(%rsp), %rax’ can respectively represents the
operation of variable type point-to-char and struct in different
instruction contexts when the binary is compiled with different
compilation options. If we know the compilation options, we
can achieve better inference results. We evaluate how the type
inference [8] benefit from DIComP, result of which is shown
in Table I. The results show that knowing the compilation
options can improve the inference accuracy (ACC) by 6.5%.
TABLE I: Fine-grained result of inferring variable types. Column
1 and 2 are the compilation options.Column 3 is the number of
variables to infer. Column 4 is the inference results without knowing
the compilation results. Column 5 is the inference results when the
compiler type is given. Column 6 is the inference results when both
the compiler type and optimization level are given.

SUPPORT ACC (Mixed) ACC (C.) ACC (C.& O.L.)

GCC

O0 102394 0.721 0.779 0.802
O1 20238 0.613 0.624 0.642
O2 19007 0.567 0.568 0.579
O3 18135 0.566 0.557 0.566

Total 159774 0.669 0.709 0.728

Clang

O0 105660 0.722 0.739 0.747
O1 3159 0.525 0.525 0.525
O2 2893 0.457 0.464 0.473
O3 2883 0.462 0.463 0.468

Total 114595 0.703 0.719 0.727
Case 3: Vulnerability Reproduction. Vulnerability reproduc-
tion is the first step to diagnose program failure. However,
current works [4], [5] show that reproduction is challenging
because of the lack of vital building configurations to perform

the compilation. Some vulnerabilities can only be reproduced
by enabling some specific configuration during compilation.
For example, CVE-2018-9251 [16] can only be triggered by
turning on ’-with-lzma’ under specific compilation options.
Ensuring the consistency of compilation options as much as
possible can greatly help users to reproduce the vulnerability.
We experiment to identify the problematic configurations
on 21 configuration-related vulnerabilities [17] from 4 well-
known applications (i.e., libxml, OpenSSL, PHP, proftpd).
Reproduction of this kind of vulnerability contains 3 steps:
compilation option inference, configuration inference, locating
vulnerability. Our tool dramatically compresses the search
space of compilation options’ combination, which saves time
for compilation option inference. On average, it helps saving
half of the processing time.

III. EXPLORATORY ANALYSIS

We focus on analyzing stripped binaries. Due to the low
readability of stripped binaries and the limited information
provided, we focus on how the compilation options affect the
distribution of mnemonics, registers, and function lengths.

Data set. We create a comprehensive training data set from
several open-source software projects, over 28,000 binaries in
total. Here we enumerate some projects of different categories:
OS tools (coreutils, binutils, etc), network programs (PHP,
nginx, etc), computationally intensive programs (pdf, zlib, etc),
and projects like Python which integrate packages of different
categories. In total, over 28,000 binaries are used for analysis.
We choose popular projects that reveal the distribution of
appearance in reality. For the need of investigation, we build
each project with different optimization levels (-O0 to -O3 and
-Os), and with different versions of GCC (version 5, 6, 7, 8,
9) and Clang (version 3.9, 4, 5, 6, 7, 8, 9).

We choose GCC [18] and Clang [19] because they are the
most widely used compilers at present. And we also choose
different versions that are currently in use.

In the following subsections, we will control the variables
and discuss how the different compilation options influence
the distribution of mnemonics, registers, and function lengths.

A. Compiler

Firstly, we investigate how the compiler influences the
appearance of binaries. We take GCC and Clang as the targets
because they are the most popular compilers among open
source projects. GCC is a part of the GNU toolchain, which
has a large number of users. And almost all the Linux software
supports the compilation using GCC. As a rising star, Clang
has a more complete system design and a large number of
community contributors. And Clang can generate intermediate
code from the source code. So that many security analysts use
Clang as the front end for program analysis.

To focus on the compiler, we leave all the other options
aside. We divide our data set into two parts — compiled
from GCC and compiled from Clang. That is to say, the part
compiled from GCC is mixed by the binaries compiled from
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Fig. 2: Distribution of mnemonic (left) and registers (right) divided by the granularity of compiler, optimization level, and compiler version.

different optimization levels and compiler versions of GCC.
So as Clang.

Mnemonics. As we can see on the left side of Figure 2,
GCC and Clang seem to have a similar usage of mnemonics.
So we list the mnemonics in Table II, of which frequency of
appearance is in the top 5 (left side), and which have the most
different distribution (right side) between GCC and Clang.

For example, 36.954% for mov indicates that mnemonic
mov represents 36.954% of all the mnemonics which are
collected from the binaries in the dataset compiled from
GCC. Columns 1 to 3 show the most frequently appearing
mnemonics. As for the mnemonic lea, it appears much more
frequently in GCC than Clang. Column 4 to 6 present the
mnemonics which have the most different distribution of GCC
and Clang. We take movabs and movups as the example, and
both of them hardly appear in the binaries compiled by Clang.
But they only appear one fifth the frequency in the binaries
compiled by GCC, which may be an obvious feature to identify
the compiler. Although the distribution of mnemonics between
GCC and Clang is slightly different in the figure, we still can
mine the influence of compiler from the data listed in the table.
TABLE II: Selected mnemonics partially influenced by compiler.

Mnemonic GCC Clang Mnemonic GCC Clang
mov 36.954% 37.060% xor 2.190% 2.823%
callq 6.70% 6.574% jmpq 2.817% 3.322%
lea 5.333% 3.054% add 3.293% 3.775%
je 4.210% 3.856% movabs 0.101% 0.510%

cmp 3.741% 4.079% movups 0.073% 0.428%

Registers. Mnemonic plays the role of an operator, while
the register acts as a container. As shown on the right side
of Figure 2, we can roughly observe the statistical results of
register distribution. The figure presents the obvious differ-
ence between compilers, such as that GCC uses %rax more
frequently than Clang. We classify the registers by their usage
and discuss how the compiler influences them respectively.

As shown in Table III, some differences are easier to be
found in the table rather than in the figure. Due to the limited
space of the paper, we only present some registers which can
obviously show the difference between compilers. Row 2 to
4 denote the registers used to pass parameters, row 5 and

6 denote the pointer registers used to maintain the original
data, row 7 denotes the miscellaneous registers saved by the
caller, row 8 and 9 denote the miscellaneous registers saved
by the callee, row 10 to 13 denote the general registers. Some
registers can be partially used, which appear as a new name.
Take the counting register %rcx as an example, which is a 64-
bit register. Register %ecx is the 32 bits version with similar
functionality, of which %cx is the lower 16 bits. %ch and %cl
is the higher 8 bits and the lower 8 bits of %cx. Meanwhile,
registers %r8, %r8d, %r8b, %r8w have the same relationships
with the registers above. We group these registers into their
own family, and we select some of them which can show the
diverse distribution of different compilation options.

TABLE III: Selected registers partially influenced by compiler.
Register GCC Clang Register GCC Clang

%ecx 1.835% 3.640% %edx 3.680% 2.905%
%rcx 2.854% 5.640% %rdx 5.871% 3.731%
%cl 0.298% 0.737% %cx 0.039% 0.103%

%ebp 0.597% 1.086% %rbp 9.923% 11.054%
%rsp 5.629% 5.139% %rbx 5.106% 5.327%

%r10d 0.238% 0.153% %r11d 0.178% 0.113%
%r12 2.164% 2.058% %r14 1.487% 2.936%
%r13 1.667% 1.782% %r15 1.403% 2.469%
%cs 0.219% 0.500% %eax 9.065% 6.960%
%ds 0.049% 0.002% %rax 19.868% 15.666%
%es 0.087% 0.003% %rip 3.603% 2.246%
%fs 0.318% 0.010%

GCC and Clang have different preferences in choosing
registers. According to the table, Clang prefers using %ecx,
%rcs, %cl to pass parameters, while GCC prefers using %edx,
%rdx, %cx. As for accountor %eax and %rax, GCC uses them
more frequently than Clang. The segment register is rarely
used for both of GCC and Clang. But we have a much lower
probability of seeing %ds and %es in Clang compiled binaries.

Expansion Rate. COTS (commercial off-the-shelf) binaries
are typically stripped of much information about the source
code. According to the different compiler behaviors, optimiza-
tion options, and the version updated, the size of the binaries
appears to be different. That is to say, a line of source code
may be compiled into different lines of assembly code.

To study quantitatively, we raise a new concept called
assembly expansion rate κ, which is defined as follows,



κ(cs, ot) =

n∑
i=1

LoA(pi, cs, ot)

LoS(pi)
(1)

As shown in the formula, κ(cs, ot) denotes the assembly
expansion rate of the concrete compiler cs and optimization
level ot. LoA(pi, cs, ot) denotes the lines of the assembly
code which is compiled from the program pi with compiler
cs and optimization level ot. LoS(pi) denotes the lines of
program pi’s source code. In this work, we use a dataset
P = {p1, p2, ..., pn}, a compiler set C = {GCC,Clang},
and a optimization level set O = {O0, O1, O2, O3, Os}. In
this part, we leave the compiler version aside which has little
influence on the statistical result. So we compile the source
code with different versions of compiler, and average the
result.

The expansion rate of κ stands for the mapping relationships
between lines of source code and lines of assembly code with
different compilation options. The smaller the rate κ, the more
the compiled binary is compressed.
TABLE IV: Mapping relationship between assembly code and source
code on different compilers and optimization levels.

Compiler O.L. κ Compiler O.L. κ

GCC O0 3.6747 Clang O0 3.8167
GCC O1 2.1508 Clang O1 2.1324
GCC O2 2.2491 Clang O2 2.4421
GCC O3 2.7876 Clang O3 2.6085
GCC Os 1.9298 Clang Os 2.0665

Table IV shows the expansion rate of different compilers
and optimization levels. The result of GCC is presented on
the left, and the result of Clang is on the right. GCC has
a similar expansion rate of κ with Clang in the same level
of optimization. The expansion rate of both of them is also
very similar in the changing trend of the optimization level.
The expansion rate of -O0 is the largest under both compilers
because it has the least optimization options. The sudden
decrease in the expansion rate of -O1 is also due to the increase
of optimization options. The expansion rate of -O2 and -
O3 is relatively increased because the compilation takes the
optimization of the run-time into account and may expand the
loop. Optimization level -Os is special because it considers the
size of the binary, so it has the smallest expansion rate under
both GCC and Clang.

B. Optimization Level

We now investigate how binaries behave under different
optimization levels. According to the presented result in the
previous section, GCC and Clang have different system de-
signs, which leads to the different distribution of mnemonics
and registers. In this section, we concentrate on the impact
caused by optimization levels. We study the distribution of
mnemonics, registers, and function length compiled from
different optimization levels under the same compiler.

a) Optimization Levels of GCC: According to the official
documents, GCC has many optimization levels with different
purposes, and there are associations between them. Besides the
default option -O0, -O1, -O2 and -O3 consists of different sets

of optimization options. There are also -Ofast which disregards
strict standards compliance and -Og which optimizes the
debugging experience.

GCC -O0

-ftree-bit-ccp
-ftree-ccp
-ftree-ch
... ...

GCC -O1

-falign-jumps 
-falign-labels  
-falign-loops 
... ...

GCC -O2

-fsplit-loops 
-fsplit-paths
... ...

GCC -O3 GCC -Ofast

GCC -Os

-falign-labels 
-falign-loops
... ...

-ffast-math 
-fstack-arrays
... ...

Fig. 3: Relationships between different GCC optimization levels.
As shown in Figure 3, ranging from -O0 to -Ofast, the

optimization options of lower optimization levels are properly
included in the higher optimization levels. -Os is equipped
with all the options of -O2 but also some more options aiming
to tune for code size rather than execution speed. According
to the usage frequency, we select 5 mainstream optimization
levels for analysis, which are -O0, -O1, -O2, -O3 and -Os.

Mnemonic. According to official GCC documentation, we
find that -O1 has 45 more options than -O0, -O2 has 48 more
options than -O1, -O3 has 16 more options than -O2, and -
Os has 6 more options than -O2. It seems that, among the
neighboring optimization levels, -O2 and -O1 are the most
different, and -O2 and -Os are the hardest to be classified,
due to that the number of different options directly influence
the difference on the appearance. However, after we conduct
a coarse-grained survey, we find that -O2 and -O3 are most
similar. The reason for the phenomenon is that -O3 adopts
many vectorizing algorithms to improve the parallel execution
of the code, but its optimization conditions are relatively
harsh, leading to the frequency of occurrence is relatively low.
Indeed, for some programs, the result of compilation under -
O2 and -O3 is identical.
TABLE V: Percentage of selected mnemonics at different GCC
optimization levels.

Mnemonic G-O0 G-O1 G-O2 G-O3 G-Os
mov 50.084% 35.069% 31.514% 31.053% 31.160%
callq 5.721% 7.947% 7.009% 6.520% 6.991%
lea 4.188% 6.075% 5.527% 5.713% 5.739%
je 2.855% 4.686% 4.655% 4.829% 4.650%

cmp 2.188% 4.133% 4.098% 4.522% 4.446%
pop 0.575% 2.507% 3.281% 2.835% 3.060%
push 1.297% 2.667% 2.520% 2.192% 2.501%
xor 0.648% 0.870% 3.463% 3.151% 3.353%
cmp 2.188% 4.133% 4.098% 4.522% 4.446%

movdqa 0.008% 0.015% 0.026% 0.252% 0.229%

To better observe the difference between the optimization
levels, we mainly selected some high-frequency mnemonics
and the mnemonics with relatively large discrimination be-
tween -O2 and -O3. As shown in Table V, we select 10
mnemonics from the data set. Column 2 to 6 show the
distribution of mnemonics of -O0, -O1, -O2, -O3 and -Os
from GCC. We can find that -O0 appears very different from
the rest of the optimization levels, mainly because it is the
default optimization level to reduce compilation time and make
debugging produce the expected results. As for -O1, it appears
much similar to others, but we can still find some differences
in the distribution of pop and xor. According to the table,
we can hardly find the difference between -O2, -O3, and -Os.
There is only slight difference between -O2 and -O3 on callq,



cmp and movdqa. Due to the optimization purpose of -Os, it
prefers to use mnemonics for code space compression.

Register. As shown in Table VI, column 2 to 6 separately
shows the distribution of registers of -O0, -O1, -O2, -O3 and
-Os. Optimization level -O0 still stands out from others. It
prefers to leverage %rbp for passing pointer rather than %rsp.
Higher optimization levels optimize the size of the binary
code, so they utilize much more %rsp to maintain the structure
of the stack. For the general registers, -O0 employs %rax at
about one-third of registers to pass arithmetic, while other
optimization levels prefer to use more diverse registers and
optimize the process of arithmetic passing. Although -O1 has
no obvious distinction, we can still see some differences from
the comparison with -O0 and -O2. On the other hand, -O2 and
-O3, there is little difference in the distribution of registers.
Only in Row 8 to 10 can we figure out some little difference
between them. It is because the optimization options of -O3
optimizes the inline functions. Optimization level -Os almost
appears the same as -O2 in the register table, while it still has
some difference with -O2 on the distribution of mnemonics.

TABLE VI: Selected registers of different GCC optimization levels.
Register G-O0 G-O1 G-O2 G-O3 G-Os

%ecx 1.084% 1.878% 2.116% 2.260% 2.256%
%rcx 2.148% 3.193% 3.068% 3.133% 3.179%
%edi 0.682% 1.675% 1.738% 1.776% 1.830%
%rdi 3.904% 7.902% 7.175% 6.826% 7.273%
%edx 3.844% 3.472% 3.562% 3.688% 3.695%
%rdx 7.394% 5.597% 5.158% 5.199% 5.092%
%rbp 23.279% 4.988% 4.464% 4.211% 4.326%
%rbx 0.919% 7.674% 6.692% 6.375% 6.720%
%rsp 1.865% 7.881% 7.198% 6.934% 6.797%

%r10d 0.011% 0.163% 0.344% 0.410% 0.368%
%r11d 0.004% 0.129% 0.247% 0.305% 0.287%
%r12 0.204% 3.177% 2.976% 2.877% 2.874%
%r13 0.095% 2.334% 2.370% 2.309% 2.233%
%r14 0.099% 1.957% 2.124% 2.126% 1.983%
%r15 0.115% 1.824% 1.985% 2.005% 1.876%
%cs 0.020% 0.037% 0.481% 0.387% 0.251%

%eax 12.649% 7.856% 7.542% 7.400% 7.677%
%rax 30.676% 14.411% 16.692% 16.049% 14.472%

Function Length. As mentioned in the previous subsection,
the expansion rate of κ of different optimization levels appears
quite different. That is to say, one single line of source code
maps to a different amount of binary code when compiled with
different optimization levels. To align the code and maintain
an appearance that can be easily understood by humans, we
count the function length at the assemble code level, which
can be easily generated from the binary code with the help of
objdump.
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Fig. 4: Amount distribution of function length of binaries compiled
from GCC with different optimization levels.

As shown in Figure 4, we can see the distribution of
different lengths of functions (assembly-level) from binaries
compiled with different optimization levels. Due to the lim-
itation of the figure length, we merge some data. We take
different intervals in points of 10, 40, 60, 140, 200, and 400,

resulting in the abnormal peaks at 10, 40, and 60. There is
also a peak at the length of 3, which is caused by dynamically
linking library functions.
0000000000000640 <.plt>:
640: ff 35 52 09 20 00 pushq 0x200952(%rip)
646: ff 25 54 09 20 00 jmpq *0x200954(%rip)
64c: 0f 1f 40 00 nopl 0x0(%rax)

0000000000000650 <putchar@plt>:
650: ff 25 52 09 20 00 jmpq *0x200952(%rip)
656: 68 00 00 00 00 pushq $0x0
65b: e9 e0 ff ff ff jmpq 640 <.plt>

0000000000000660 <__stack_chk_fail@plt>:
660: ff 25 4a 09 20 00 jmpq *0x20094a(%rip)
666: 68 01 00 00 00 pushq $0x1
66b: e9 d0 ff ff ff jmpq 640 <.plt>

0000000000000670 <printf@plt>:
670: ff 25 42 09 20 00 jmpq *0x200942(%rip)
676: 68 02 00 00 00 pushq $0x2
67b: e9 c0 ff ff ff jmpq 640 <.plt>

Take the code above as an example. When we call a function
from the library, we will first jump to table .plt (Procedure
Linkage Table). Due to the mechanism of dynamic linking,
when we first call the function printf, we jump to table .plt and
fill the real address in the table GOT (Global Offset Table) for
use the next time. Thus, every time we call a library function,
we will get a function with 3 lines of assembly code.

According to Figure 4, -O0 still behaves quite differently
from other optimization levels. Functions with length of 1, 2,
4 can distinguish -O2 and -O3. But it can not provide much
information for its limited amount. Besides, other parts of the
figure, can not provide more features to distinguish between
-O2 and -O3, which even confuse the boundary between -Os
and them.

b) Optimization Levels of Clang: After thoroughly in-
vestigating the appearance influenced by different GCC opti-
mization levels, we follow the same procedure to study the
optimization levels of Clang. The relationships of different
optimization levels of Clang are similar to the relationships of
GCC. There is, however, a small difference that appears on
-Os of Clang, which drops some optimization options from -
O2. To compare with GCC, we select optimization levels -O0,
-O1, -O2, -O3 and -Os from Clang for analysis.

Mnemonic. For the simultaneous comparison between com-
pilers and optimization levels, we select mnemonics as de-
scribed previously.

TABLE VII: Selected mnemonics of different Clang optimization
levels.

Mnemonic C-O0 C-O1 C-O2 C-O3 C-Os
mov 47.960% 33.357% 32.800% 32.574% 33.494%
callq 5.591% 8.123% 6.581% 6.458% 6.813%
lea 1.441% 3.440% 3.728% 3.734% 3.660%
je 2.466% 4.073% 4.481% 4.505% 4.360%

cmp 3.384% 3.564% 4.451% 4.626% 4.566%
jne 2.141% 2.832% 3.106% 3.317% 3.141%
test 0.357% 3.912% 4.301% 4.424% 4.196%
add 4.340% 3.409% 3.634% 3.707% 3.475%

jmpq 6.217% 2.225% 2.253% 2.284% 2.235%
jmp 0.030% 1.760% 1.774% 1.569% 1.728%

As shown in Table VII, column 2 to 6 show the distribution
of mnemonics of -O0, -O1, -O2, -O3 and -Os from Clang.



-O0 behaves differently among all of the selected mnemonics.
On the one hand, -O0 has a large amount of mov, which even
takes up half. On the other hand, -O0 is only equipped with
less amount of test and jmp than other optimization levels. As
for -O1 and -Os of Clang, they still have slightly differences
between others. Tracing back to Table V, -O2 and -O3 of
GCC have distinctions on the distribution of callq and cmp,
while -O2 and -O3 of Clang seems have an even percent
of these mnemonics, which really confuses both of human
experts and machines. To figure out the root cause, we look
up the document and find that -O2 and -O3 of Clang only
have 2 different options. The reason above may explain why
the appearance of -O2 and -O3 of Clang is so similar.

TABLE VIII: Selected registers of different Clang O.L.
Register C-O0 C-O1 C-O2 C-O3 C-Os

%ecx 5.051% 2.743% 3.134% 3.165% 2.256%
%rcx 6.975% 4.419% 5.356% 5.361% 3.179%
%edi 1.028% 2.018% 2.072% 2.060% 1.830%
%rdi 5.621% 7.473% 6.528% 6.469% 7.273%
%edx 3.139% 2.590% 2.846% 2.829% 3.695%
%rdx 4.056% 3.221% 3.717% 3.727% 5.092%
%rbp 29.858% 3.624% 3.804% 3.864% 4.326%
%rbx 0.249% 8.332% 6.985% 6.939% 6.720%
%rsp 2.407% 6.603% 6.119% 6.072% 6.797%

%r10d 0.104% 0.125% 0.182% 0.184% 0.368%
%r11d 0.061% 0.087% 0.143% 0.145% 0.287%
%r12 0.068% 2.941% 2.807% 2.816% 2.874%
%r13 0.056% 2.317% 2.491% 2.515% 2.233%
%r14 0.067% 4.637% 3.873% 3.830% 1.983%
%r15 0.050% 3.737% 3.335% 3.294% 1.876%
%cs 0.271% 0.858% 0.591% 0.576% 0.251%

%eax 7.978% 6.748% 6.428% 6.448% 7.677%
%rax 19.741% 14.728% 14.286% 14.251% 14.472%

Register. According to Figure 2, ranging from -O1 to -Os
of Clang has quite similar distribution of registers. To make
the analysis complete enough for our study, we select exactly
the same registers as Table VI to fill Table VIII. As shown in
Table VIII, column 2 to 6 shows the distribution of registers
of -O0, -O1, -O2, -O3 and -Os from Clang.

-O0 is again clearly distinguished from the others due
to its default settings. As for -O1 and -Os, they also have
some registers which have different distribution with each
other, such as %ecx, %rdx, etc. So we try to dig more
information on the aspect of the register, to classify -O2 and
-O3. Unfortunately, as we can see in Table VIII, -O2, and
-O3 of Clang nearly appear the same on the distribution of
registers. We look through the whole data set to find some
helpful information, but we fail.

Function Length. After failing to distinguish -O2 and -O3
of Clang with the help of mnemonics and registers, we turn to
the last feature – function length. As shown in Figure 5, we
can see the red and orange pillars stand out which represent the
amount of function length of -O0 and -O1. As for mnemonics
and registers, the function length does not help distinguish
between -O2 and -O3, either.

C. Compiler Version

In the previous subsections, we investigate how the different
compilers and optimization levels influence the appearance of
binaries. In this part, we try to figure out how the appearance of
binaries will change across different versions of the compiler.

We select the mainstream versions of GCC (5, 6, 7, 8, 9)
and Clang (3.9, 4, 5, 6, 7, 8, 9). The investigation result is
not satisfied. As shown in Figure 2, no matter the distribution
of mnemonics or registers, we can not summarize one single
rule to distinguish them. We also analyze the distribution of
function length, but still, nothing can help.
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Fig. 5: Distribution of function length of binaries compiled from
Clang with different optimization levels.

To further investigate the difference between different com-
piler versions, we leverage Bindiff to measure the similarity
between the binaries compiled from different compiler ver-
sions. BinDiff is a binary comparison tool commonly used in
industry. Since BinDiff itself does not have the capability to
disassemble binaries, it is necessary to use IDA Pro to firstly
disassemble the binary and generate an intermediate result to
build graph structure for the binary. BinDiff is based on graph
theory, looking for isomorphism graphs in two topological
graphs to complete function similarity matching. Although
the graph isomorphism problem is still an open problem in
academia, BinDiff uses heuristic matching algorithms to make
it acceptable in terms of both matching speed and accuracy.

TABLE IX: Similarity comparison between versions of GCC.
G-5.0 G-6.0 G-7.0 G-8.0 G-9.0

G-5.0 99.2% 96.9% 94.1% 92.3% 82.5%
G-6.0 96.8% 99.1% 96.6% 95.0% 86.7%
G-7.0 93.8% 96.6% 99.1% 97.0% 90.0%
G-8.0 91.9% 95.0% 96.9% 99.2% 95.5%
G-9.0 82.0% 86.8% 89.9% 95.4% 99.2%

As shown in Table IX, we present results of cross-
comparison between different versions, which is ranging from
0 to 100%. 96.8% in column 2 row 3 denotes that, Bindiff
think the binaries compiled by GCC version 5 and 6 are 96.8%
similar. We analyze all the binaries in our data set and average
them to fill the table.

Due to the symmetry of the table, the symmetric data should
be completely consistent, and the data on the diagonal should
theoretically be 100%. However, the result is not as expected.
On the one hand, because the stripped binary does not contain
debugging information, the disassembly tool cannot effectively
rebuild all the information, resulting in loss of functions or
information. On the other hand, it may be due to the strategy
of Bindiff ’s matching algorithm, which caused the matching
to fail or to match the wrong function.

TABLE X: Similarity comparison between versions of GCC.
C3.9 C4.0 C5.0 C6.0 C7.0 C8.0 C9.0

C3.9 99.2% 97.7% 96.5% 95.2% 94.4% 94.0% 92.3%
C4.0 97.7% 99.2% 98.1% 97.0% 96.3% 95.8% 94.5%
C5.0 96.5% 98.1% 99.2% 98.2% 97.5% 97.1% 95.8%
C6.0 95.2% 97.0% 98.1% 99.2% 98.5% 98.1% 97.0%
C7.0 94.4% 96.3% 97.5% 98.5% 99.2% 98.7% 97.7%
C8.0 94.0% 95.9% 97.1% 98.1% 98.7% 99.2% 98.3%
C9.0 92.3% 94.5% 95.8% 97.0% 97.7% 98.3% 99.2%

According to Table IX, neighboring versions have a higher
similarity, while versions with a large span share a lower
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Fig. 6: An overview of the system workflow. The sub-figures separately represent the training phase and the testing phase.

similarity. Binaries of GCC version 5 are 96.8% similar to
the GCC version 6, but they are only 82.0% similar to the
GCC version 9. That is to say, we may distinguish the binaries
compiled from version 9 from version 5, but the neighboring
versions may mislead DIComP.

Also, we analyze the versions of Clang. As shown in Ta-
ble X, the versions of Clang have a higher similarity between
each other. Even the similarity between Clang version 3.9 with
Clang version 9 is 92.3% (column 2 row 8). This makes it
difficult to distinguish the versions of Clang.

IV. OVERVIEW

In this section, we provide an overview of our method.
Given the analysis results above, we try to leverage machine

learning to infer compilation options. According to Figure 6,
our prototype consists of two phases, training and testing.
The only difference between them is that we utilize debug
information and the information of compilation options to train
the Function Boundary Model and Hierarchical Model during
the training phase, while we just input the stripped binaries
and get the inference results during the testing phase.

Compile. To get a large number of binaries with different
compilation options, we firstly compile projects using different
compilers with different optimization levels and versions. We
use a script to select a pre-built docker image [20] that
contains different compilers. After compilation, we collect all
the binaries contributing to the data set.

Extract. In the extraction stage, we use objdump to dis-
assemble each binary, which can reach 99.4% of accuracy
under our experiment. We split each assembly code into 3
elements: one mnemonic and two operands. Operands may
be left blank if there are less than two operands. Then, we
count both mnemonics and registers that appear in operands.
To normalize our data, we divide the frequency of mnemonics
and registers by the sum of their frequencies individually, so
that we get the portion of each kind of mnemonic or register.
We also count the length of the assembly code of each function
and then get a normalized histogram of all the lengths. Finally,
we put these features into a matrix for each binary for the next
step.

Function Boundary Model. To get the length of each
function, we need to locate the start point and the endpoint
of the stripped binaries. Thanks to the previous works [12],
[13], we can imitate the prototype of them to accomplish the
mission. We use Word2Vec to transfer assembly language into

vectors and mark those being the boundaries of functions. Its
accuracy is very high which is almost 100%, and it can well
assist the pipeline of inference.
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Fig. 7: Structure of hierarchical model.

Hierarchical Model. Although the advanced machine learn-
ing method has enough fitting capability to learn the pattern
of each single compilation option with one model, we want
to do it in a fine-grained way and make it more practical.

As shown in Figure 7, we present the structure of the
hierarchical model. Firstly, we train a model to identify the
compiler. Then, we separately train two models to distinguish
the optimization levels of the binaries for GCC and Clang. At
last, we have 10 sets of binaries, which are used to train their
own models to classify the versions.

As mentioned in Section III, we have three sets of features
that can be utilized, mnemonics, registers and function length,
which can be represented as follows,

Feature(bn) =

{
MNE(bn) = N(mne1,mne2, ...,mnei)

REG(bn) = N(reg1, reg2, ..., regj)

FUNL(bn) = N(funl1, funl2, ..., funlk)

MNE(bn), REG(bn), and FUNL(bn) denote the matrices
that are the statistical result of mnemonics, registers and
function length for the binary bn with the size of 1 × i,
1 × j and 1 × k. At different stages, we will use different
combinations of features to infer the compilation options based
on the experimental results.

Inference Unseen Binaries. Same as the training phase,
we use objdump to disassemble unseen binaries. Then, we use
the same techniques to extract portions of different mnemonics
and registers. For function length, the function boundary model
really helps.

At last, we feed the combination features from mnemonics,
registers, and function length into our model and to infer the
compilation options.



V. IMPLEMENTATION

In this section, we present the implementation of our system
DIComP.

Model Selection. We aim to propose a practical tool to
figure out the used compilation options from the stripped bina-
ries. Security researchers can leverage the tool to improve the
prior diagnosis for the security applications (e.g., vulnerability
patch, reverse engineering). So it must have the following
characteristics: efficient, precise and lightweight.

Fig. 8: Control Flow over the different optimization levels compiled
from the same source code.

Previously, several works [21]–[23] tried to solve this prob-
lem with traditional methods and learning-based methods, but
none of them can meet all the needs. It is hard to balance the
accuracy and efficiency of the method.

Figure 8 above presents the control flow of the binaries
compiled from the same source code but with different opti-
mization levels. The blocks framed in red are referring to the
same source code. It is obvious that the control flows indeed
are slightly different locally and globally. But it can not be
the most prominent feature to distinguish them.

So we take the distribution of mnemonics, registers, and
function length as features, which also imply the relationship
of control flow. The way of extracting and embedding the
features is far more efficient than before.

The learning-based method can achieve a great result. So we
consider it to make it precise. But RNN-like (Recurrent Neural
Networks) models [23], [24] and CNN (Convolutional Neural
Networks) models [25] have a great number of parameters,
which require numerous computational resources. According
to our analysis result, MLP (Multi-Layer Perceptron) is pow-
erful enough to capture the relationship between instruction
frequency and the corresponding compilation options. Not
only it can cross combine the features, but it is also very
lightweight.

Processing Pipeline. We batch compile the source code for
setting up the data set. DIComP disassembles the binaries with
objdump. To figure out the distribution of mnemonics and
registers, we develop a Python script that leverages regular
expressions. According to the previous works [12], [13], we
utilize LSTM (Long Short-Term Memory) Networks to learn
the function boundary of the binary code which can help us
know the distribution of function length. For the hierarchical
inferring model, we use MLP as aforementioned to separately
train each part. In all the processes equipped with the machine

learning method, we use the Keras [26] package with the
TensorFlow-CPU backend. For the evaluation part, we use the
machine learning library scikit-learn [27] which calculates the
metrics for each stage.

Hardware Equipment. All our experiments were con-
ducted on a PC with 16GB memory, 1 Intel i7-4870HQ CPU
(2.5 GHz), and 512GB SSD. We use the TensorFlow-CPU
backend with Intel MKL support. To make our tool more
friendly to use, all the experiments can be run on ordinary
equipment.

VI. EVALUATION

DIComP is a machine learning-based method, so we use
three performance metrics commonly used to evaluate machine
learning classifiers: precision (P), recall (R), and F1 score.
Formally, they are defined as follows:

P =
TP

TP + FP
,R =

TP

TP + FN
,F1 =

2 ∗ P ∗R
P +R

where TP is the true positives, FP is the false positives, FN
is the false negatives. Precision is the ratio of cases where
the predicted value is equal to the given value, which is the
closeness of the measurements to each class. The recall is the
proportion of correct predictions over the set of their class
(i.e., the accuracy ratio of inferring the right compiler or
optimization level). F1 score is a balance measurement that
is calculated by precision and recall. All three metrics are in
the range of 0 to 1.

To fairly evaluate our method, we split our data set into two
parts, of which one part consists of 80% of binaries for training
and another part consists of 20% of binaries for testing. There
is no intersection between the two parts of the binaries, and
they are from different applications.

A. Evaluation of distinguishing compilers.
TABLE XI: Classification result of compilers by mnemonic, register
and function length.

MNE REG FUNL
P R F1 P R F1 P R F1

GCC 1.00 1.00 1.00 1.00 1.00 1.00 0.85 0.26 0.39
Clang 1.00 1.00 1.00 1.00 1.00 1.00 0.70 0.97 0.81

According to the hierarchical model, we firstly distinguish
the compiler of the binaries. As shown in Table XI, we
present the classification results separately by using mnemon-
ics (MNE), registers (REG), and function length (FUNL).
TABLE XII: Accuracy comparison with previous works on distin-
guishing the compilers.

GCC Clang
i2v RNN [24] 0.99 0.97
Rosenblum2011 [21] 0.98 0.98
Rosenblum2010 [28] 0.93 -
DIComP 1.00 1.00

The experimental results confirm our previous observations.
The binaries compiled from GCC and Clang have an obvious
different distribution of mnemonics and registers, which can
be utilized to distinguish the compiler, while they are similar
to the distribution of function length. We individually utilize
the mnemonics and registers, both of which can distinguish
the compiler with 100% accuracy.



Table XII presents the comparison result with previous
works. DIComP outperforms all the works. Rosenblum et al.
[28] do not distinguish Clang at their work.

B. Evaluation of classifying optimization levels.

After we easily distinguish the compiler of the stripped
binaries, we get two sets of binaries compiled from GCC and
Clang. So we can classify them into corresponding optimiza-
tion levels on the next stage.
TABLE XIII: Classification result of optimization levels (GCC) by
mnemonic, register and function length.

G-O0 G-O1 G-O2 G-O3 G-Os Macro avg.

MNE
P 1.00 0.98 0.41 0.31 0.89 0.72
R 0.99 0.97 0.53 0.19 0.98 0.73
F1 0.99 0.98 0.46 0.24 0.93 0.72

REG
P 0.99 0.51 0.60 0.47 0.25 0.57
R 1.00 0.89 0.36 0.64 0.07 0.59
F1 1.00 0.65 0.45 0.54 0.11 0.55

FUNL
P 0.90 0.31 0.43 0.92 0.04 0.52
R 0.96 0.95 0.07 0.63 0.00 0.52
F1 0.93 0.47 0.12 0.75 0.00 0.45

MNE+REG
P 1.00 1.00 0.52 0.41 0.72 0.73
R 1.00 0.92 0.47 0.34 0.98 0.74
F1 1.00 0.96 0.49 0.37 0.83 0.73

MNE+FUNL
P 0.94 0.96 0.87 0.81 0.82 0.88
R 0.99 0.95 0.75 0.74 0.96 0.88
F1 0.97 0.96 0.81 0.77 0.89 0.88

REG+FUNL
P 0.99 0.47 0.76 0.84 0.38 0.69
R 1.00 0.85 0.75 0.65 0.16 0.68
F1 1.00 0.60 0.75 0.73 0.22 0.66

All
P 1.00 0.99 0.79 0.87 0.89 0.91
R 1.00 0.96 0.85 0.74 0.97 0.90
F1 1.00 0.97 0.82 0.80 0.93 0.90

Firstly, we evaluate the result of inferring the optimization
levels from the binaries compiled by GCC. As shown in Ta-
ble XIII, we present the result of using different combinations
of features to infer the optimization levels. Column 2 to 6
separately show the result of classifying -O0, -O1, -O2, -
O3 and -Os. Column 7 shows the average result of all the
optimization levels. Merged row 1 to 3 shows the inferring
results of using individual features, mnemonics (MNE), regis-
ters (REG), and function length (FUNL). Merged row 4 to 6
shows the inferring results of using combined features, and
the last merged row shows the result predicted by all the
features. According to the table, -O0, -O1, and -Os of GCC
can be inferred from mnemonics’ strength. We discover that
binaries compiled with -O2 and -O3 of GCC have a quite
similar appearance, which is hard for us to distinguish with
individual features. Fortunately, when we combine the features
of mnemonic and function length, we can roughly classify
them. When we utilize all the features, the distinction between
-O2 and -O3 will be greater, and the overall performance of
inferring all optimization levels is also the best. The direct
combination of the features does not produce the above result,
all of which is due to the ability of the neural networks to mine
the inherent connections of the features.
TABLE XIV: Accuracy comparison with previous works on distin-
guishing optimization levels of GCC.

G-O0 G-O1 G-O2 G-O3 G-Os
HIMALIA [23] 0.99 0.99 0.73 0.74 0.99
BinEye [25] 0.98 0.97 0.98 0.96
BinComp [22] 0.91 - 0.91 - -
Rosenblum2011 [21] 0.99 0.99 -
DIComP 1.00 0.96 0.85 0.74 0.97

Table XIV compares DIComP with previous works to
distinguish the optimization level. Except HIMALIA [23], the
rest of the previous works can not distinguish all the levels.

BinEye [25] groups -O2 and -O3 together. BinComp [22]
only distinguishes -O0 and -O2. Rosenblum et al. [21] sepa-
rately groups -O0 and -O1, -O2 and -O3. DIComP behaves a
little worse at -O1 and -Os than HIMALIA, but the rest of the
optimization levels outperforms all the tools.
TABLE XV: Classification result of optimization levels (Clang) by
mnemonic, register and function length.

C-O0 C-O1 C-O2 C-O3 C-Os Macro avg.

MNE
P 1.00 0.89 0.00 0.50 0.64 0.61
R 1.00 0.95 0.00 0.73 0.96 0.73
F1 1.00 0.92 0.00 0.60 0.77 0.66

REG
P 0.98 0.59 0.35 0.32 0.77 0.60
R 1.00 0.91 0.39 0.16 0.62 0.62
F1 0.99 0.71 0.37 0.22 0.68 0.60

FUNL
P 0.81 0.33 0.43 0.49 0.80 0.57
R 0.96 0.93 0.08 0.14 0.37 0.50
F1 0.88 0.48 0.14 0.22 0.50 0.44

MNE+REG
P 1.00 0.86 0.51 0.53 0.86 0.75
R 1.00 0.96 0.62 0.30 0.95 0.77
F1 1.00 0.91 0.56 0.39 0.90 0.75

MNE+FUNL
P 1.00 0.50 0.53 0.51 0.80 0.67
R 1.00 0.97 0.19 0.25 0.97 0.68
F1 1.00 0.66 0.28 0.34 0.88 0.63

REG+FUNL
P 1.00 0.43 0.45 0.49 0.92 0.66
R 1.00 0.95 0.24 0.14 0.90 0.65
F1 1.00 0.59 0.32 0.21 0.91 0.61

All
P 1.00 0.57 0.46 0.46 0.95 0.69
R 1.00 0.98 0.36 0.22 0.96 0.70
F1 1.00 0.72 0.40 0.30 0.96 0.67

To verify the transferability of our method, we also accom-
plish the experiments to infer the optimization levels of Clang
with the same experimental settings, the results of which are
shown in Table XV. We can figure out that -O0 and -O1 can
be easily distinguished from other optimization levels with the
help of mnemonics. Different from GCC, the appearance of the
binaries compiled from -O2, -O3, and -Os are more similar,
which is hard to deal with. We can classify the binaries of
-Os by leveraging all the features, but this is not sufficient to
distinguish between -O2 and -O3. In particular, we find that
the feature of function length is not able to distinguish -O2
and -O3 of Clang like GCC but even confuses the classifier.
This result confirms that the similarity between the binaries
compiled from -O2 and -O3 is very high because there have
only two different optimization options.
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Fig. 9: Confusion matrix of classifying optimization levels.
To further analyze the results, we introduce a confusion

matrix to help us analyze why some binaries cannot be
correctly classified. As shown in Figure 9, we present the
confusion matrix of optimization levels of GCC and Clang.
Take Figure 9 (a) as an example. The horizontal axis represents
the ground truth of the binaries, and the vertical axis represents
the value predicted by the model of the binaries.



TABLE XVI: Efficiency comparison with related works.
Method Tech. Training Time Epoch Testing Time Params FLOPS Model Size

BinEye [25] CNN 44Min50S 10 56S 1.31M 11.5M 16MB
HIMALIA [23] Bi-GRU 143H20Min10S 10 3H7Min57S 2.37M 6.29M 23MB

DIComP (ours) MLP 2.4S 10 0.06S 132K 1.31M 1MB

So the grids on the diagonal represent the binaries classified
correctly. The darker the color, the greater the number of
corresponding grids. Column 1 row 1 represents the amount
of the binaries compiled from -O0 of GCC which are correctly
predicted to -O0, while column 1 row 2 represents that almost
no sample of -O0 is classified to -O1. According to the
sub-figure (a), we can obviously figure out that most of the
binaries compiled from -O2 and -O3 of GCC can be correctly
classified, and the rest of them are not placed properly due
to the similar optimization options between -O2 and -O3. Pay
attention to sub-figure (b), we originally regard the reasons for
confusing the -O2 and -O3 of Clang the same as GCC. But
the matrix tells that the binaries compiled from -O2 of Clang
can be classified to -O3 and -Os, even -O1, which further
illustrates that the similarity between optimization levels of
Clang is higher than for GCC.

C. Discussion of compiler versions.

We try to infer the compiler version from the stripped
binaries. But it seems that the results are not useful. Versions
3.9, 6, and 9 of Clang and versions 5 and 9 of GCC can
be distinguished with accuracy of 52%, 59%, 74%, 95% and
66%. According to the result, we find that all of the versions
of Clang seems more similar to each other, while GCC version
5 and version 9 has some obvious difference.

D. Efficiency.

Even though the data-driven method can learn the rules
from a set of high-quality data, comparing with rule-based
methods which saves much human effort, and it can iterate
the system itself by adding the newly coming data. But it still
faces the problem of the significant overhead of computational
resources. We evaluate the overhead of DIComP compared
with previous learning-based methods, to reflect our method
is efficient and lightweight at the same time.

To evaluate fairness enough, we test all the methods on the
same dataset, which contains 12,000 binaries from GNU, 80%
for training, 20% for testing. To accelerate the procedure, we
use 1 NVIDIA 1070 GPU in the experiment. The detailed
evaluation result is shown in Table XVI. Column 2 denotes
the learning model, column 3 and 5 separately denotes the
training time and testing time. Column 4 denotes the running
epochs for each method are equal to 10 to align the variables.
Column 6 denotes the parameters of the learning model, and
column 7 denotes the FLOPS (FLoating-point Operations Per
Second) of each model. According to the result, DIComP are
tens of thousands faster than previous works both in training
speed and testing speed, and it has much fewer parameters and
FLOPS of the model than the previous works. Because MLP
can not benefit from GPU’s parallel acceleration, otherwise

the gap would even be wider. Even if we only have CPU, our
method doesn’t cost more than twice as much time. Column
8 denotes the model size, indicating DIComP can be easily
packed as a quite lightweight tool for further binary analysis.

VII. RELATED WORK

We summarize the related works and compare them with
DIComP in terms of whether they identify the compiler
(column 2), optimization level (column 3), and version (col-
umn 4), the technique (column 5), and efficiency (column 6)
in Table XVII. Luca et al. [24] propose a structure-based
representation for binary similarity and compiler inference.
HIMALIA [23] and BinEye [25] leverage machine learning
to mine the provenance of optimization levels. BinComp [22]
and [21] infer the compiler, optimization level and compiler
version with rule-based method and CRF (Conditional Ran-
dom Field). Work [28] identify the compiler information with
the help of CRF.

TABLE XVII: Comparison with related works.
C. O.L. VER. Tech. Efficiency

i2v RNN [24] ✓ ✗ ✗ RNN ✗
BinEye [25] ✗ ✓ ✗ CNN ✓
HIMALIA [23] ✗ ✓ ✗ Bi-GRU ✗
BinComp [22] ✓ ✓ ✓ ✗ ✗
Rosenblum2011 [21] ✓ ✓ ✓ CRF ✗
Rosenblum2010 [28] ✓ ✗ ✗ CRF ✗
DIComP (Ours) ✓ ✓ ✓ MLP ✓

However, none of them can meet all the needs. Even if
the efficiency of BinEye is comparable to ours, but the work
is limited by the hardware and needs to be accelerated with
GPUs. DIComP infers all 5 common optimization levels of
GCC and Clang with high accuracy, and comprehensively
studies the binary appearance effected by the compilation
options. What’s more, we conduct a thorough study on how
DIComP benefits other downstream missions, and it is really
hardware friendly.

VIII. CONCLUSION

In this work, we thoroughly study how the different com-
pilation options influence the appearance of the generated
binaries. Based on the observations, we develop DIComP that
leverages a lightweight neural network to infer the compilation
options from stripped binaries. The comprehensive evaluations
show that DIComP has remarkable speed and accuracy. We
believe DIComP can benefit many downstream missions on
analyzing binaries.
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