
SIEGE: Self-Supervised Incremental Deep Graph Learning for
Ethereum Phishing Scam Detection

Shucheng Li
National Key Lab for Novel Software

Technology, Nanjing University
Nanjing, Jiangsu, China

shuchengli@smail.nju.edu.cn

Runchuan Wang
National Key Lab for Novel Software

Technology, Nanjing University
Nanjing, Jiangsu, China

njucs_san@smail.nju.edu.cn

Hao Wu
National Key Lab for Novel Software

Technology, Nanjing University
Nanjing, Jiangsu, China
hao.wu@nju.edu.cn

Sheng Zhong
National Key Lab for Novel Software

Technology, Nanjing University
Nanjing, Jiangsu, China
zhongsheng@nju.edu.cn

Fengyuan Xu∗
National Key Lab for Novel Software

Technology, Nanjing University
Nanjing, Jiangsu, China
fengyuan.xu@nju.edu.cn

ABSTRACT
The phishing scams pose a serious threat to the ecosystem of
Ethereum which is one of the largest blockchains in the world.
Such a type of cyberattack recently has caused losses of millions
of dollars. In this paper, we propose a Self-supervised IncrEmental
deep Graph lEarning (SIEGE) model, for the phishing scam de-
tection problem on Ethereum. To overcome the data scalability
challenge, we propose splitting the original Ethereum transaction
data and constructing transaction graphs for each split. Confronted
with the minimal labeled data available, we resort to graph-based
self-supervised learning. We design a spatial pretext task to learn
high-quality node embeddings inside a single graph split, as well
as an incremental learning paradigm and a temporal pretext task
to facilitate information flow between different graph splits. To
evaluate the effectiveness of SIEGE, we gather a real-world dataset
consisting of six-month Ethereum transaction records. The results
demonstrate that our model consistently outperforms baseline ap-
proaches in both transductive and inductive settings.

CCS CONCEPTS
• Applied computing → Digital cash; • Computing methodolo-
gies → Artificial intelligence.

KEYWORDS
phishing scam detection, graph neural network, self-supervised
learning
ACM Reference Format:
Shucheng Li, Runchuan Wang, Hao Wu, Sheng Zhong, and Fengyuan
Xu. 2023. SIEGE: Self-Supervised Incremental Deep Graph Learning for

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0108-5/23/10. . . $15.00
https://doi.org/10.1145/3581783.3612461

Ethereum Phishing Scam Detection. In Proceedings of the 31st ACM In-
ternational Conference on Multimedia (MM ’23), October 29-November 3,
2023, Ottawa, ON, Canada. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3581783.3612461

1 INTRODUCTION
Ethereum [49], one of the most popular and scalable blockchains,
has reached $193 billion market cap so far. It unleashes the full
potential of smart contracts, which automatically manage and ap-
prove transactions without a centralized entity, and thus attracts a
lot of attention and resources via its various decentralized finance
(DeFi) applications atop smart contracts. Also, more and more peo-
ple are starting to believe that an open, trust-free blockchain like
Ethereum is better suited as a "back end" of web 3.0. And some
problems caused by centralized data storage, such as data leakage,
could be better solved with Ethereum.

However, the thriving of Ethereum also puts millions of its
users at risk of various malicious attacks [20], such as the phishing
scam [5, 8, 25, 47, 50, 51], Ponzi scheme [1, 9], and money launder-
ing [48]. Among these attack-related crimes, phishing scam is the
category involving the largest amount of money1. Compared to
traditional phishing scams via phishing emails, web services, and
malware, phishing scams in Ethereum are more difficult to detect.
This is because victims typically make transfers directly to mali-
cious wallet accounts on Ethereum. Therefore, existing security
analysis of software or smart contracts may not be sufficient to
detect phishing scams on Ethereum. We head to transactions for
opportunities to address the phishing scams faced by Ethereum.

Naturally, Ethereum transactions can be formulated into a large-
scale evolving graph. There are many successful cases showing that
deep graph learning technology can be applied to non-euclidean
data like graph [16, 17, 24, 35, 42, 45]. However, two challenges
prevent us from leveraging deep graph learning on phishing scam
detection on Ethereum, as follows,

• Data scalability. Currently, there have been more than 1.7
billion transactions on Ethereum, and new ones are being
added consistently. Thus the Ethereum transaction graph

1https://go.chainalysis.com/2021-Crypto-Crime-Report.html

https://orcid.org/0000-0002-5414-6203
https://orcid.org/0009-0006-1313-9433
https://orcid.org/0000-0002-0980-9805
https://orcid.org/0000-0002-6581-8730
https://orcid.org/0000-0003-3388-7544
https://doi.org/10.1145/3581783.3612461
https://doi.org/10.1145/3581783.3612461
https://doi.org/10.1145/3581783.3612461

MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada Shucheng Li, Runchuan Wang, Hao Wu, Sheng Zhong, and Fengyuan Xu

is extremely large and hard to analyze through the existing
deep graph learning methods.

• Label scarcity. Data labels are crucial for successful appli-
cations of deep learning methods. Existing phishing scam
labels (accounts) are mainly reported by different organi-
zations or individuals, and the number of labeled data is
minimal compared to the total number of accounts. Fur-
thermore, label scarcity will become more severe in those
recently-generated graph parts, creating an issue of temporal
labeling imbalance.

Previous works [5, 25, 50, 51] attempt to mitigate these chal-
lenges through a graph sampling mechanism, which increases the
proportion of the phishing scam nodes and reduces the size of
the transaction graph. However, it could also lead to serious data
distribution distortion and still suffers from the issue of temporal
labeling imbalance.

In recent years, self-supervised learning (SSL) has achieved suc-
cess in many areas, e.g., pre-trained languagemodels like BERT [12],
GPT series [3, 33, 36], etc.) or pre-training methods of visual models
(MoCo [18], SimCLR [6], etc.). SSL is particularly good at dealing
with learning problems that need to process (i) a large amount of
data with (ii) very few labels. In contrast to supervised learning,
SSL aims to obtain supervision signals from the data itself through
different pretext tasks, which can somehow alleviate the problem
of poor generalization due to overfitting, and weak robustness
faced with adversarial attacks [28]. For applying SSL in graphs, rich
structural information could be both inspiration and barrier for the
pretext tasks design [22].

Based on the observations above, we propose a Self-supervised
IncrEmental deep Graph lEarning model (SIEGE) for the phish-
ing scam detection problem. It consists of a graph self-supervised
learning module and a graph incremental learning module.

First, we design self-supervised learning pretext tasks in both
spatial and temporal perspectives to learn a more complete and
high-quality node representation. Our spatial pretext task aims to
ensure that the learned node embeddings can represent both the
initial attributes of nodes and the contexts in which the nodes are
located in the graph. For smart contracts, one of the most critical
components of Ethereum, we give them special consideration to
learn their different functionalities in Ethereum. In our temporal
pretext task, we consider the temporal variation of the node be-
haviors (user behaviors) and try to predict their future behaviors
with their current states and contexts located. High-quality node
embeddings learned from a temporal perspective also help us to
determine their probabilities to be phishing scam nodes.

Second, for the graph incremental learning module, instead of
handling the whole graph at once, SIEGE processes the graph to
ensure the size of the in-memory graph is acceptable. It splits the
transaction graph into pieces of suitable size (i.e., a set of Ethereum
transaction blocks) and incrementally consumes them one by one in
the temporal order to learn the node representation. With this way
of processing Ethereum transaction data sequentially, SIEGE could
adapt to the latest changes by continuously feeding new transaction
data.

To conclude, our contributions are as follows,

• We present SIEGE, a novel self-supervised learning model
for phishing scam detection in Ethereum. Experiments on
real-world transaction data demonstrate that SIEGE achieves
significantly higher performance (6% ~19% improvement in
F-1 score) compared to baseline models, in both transductive
and inductive settings.

• To address the challenge of huge data volume, the original
Ethereum transaction data is divided into smaller splits and
transaction graphs are constructed for each split. Then an
incremental learningmodule is proposed to learn these graph
splits sequentially.

• To overcome the label scarcity challenge, we propose a self-
supervised learning module that incorporates two pretext
tasks. These tasks enable graph neural networks (GNNs) to
effectively leverage spatial and temporal information from
the transaction graph splits. The learned graph neural net-
work model could generate high-quality node embeddings,
to be used in phishing scam detection finally.

2 RELATEDWORK
We mainly introduce two research directions related to this work:
(i) Ethereum phishing scam detection; (ii) deep graph learning. For
(i), we will show some background knowledge about the basics of
Ethereum and the Ethereum transaction graph. Then we describe
the methodology of existing works for phishing scam detection on
Ethereum. We will also compare the difference between Ethereum
and other blockchain platforms (especially Bitcoin). For (ii), we will
briefly introduce the development of GNN methods.

2.1 Ethereum Phishing Scam Detection
2.1.1 Ethereum basics. Inspired by Bitcoin [32], Ethereum [49]
aims to become a next-generation blockchain platform that sup-
ports both cryptocurrency and decentralized applications (DApps).
The key is the designed smart contracts on Ethereum, which can
be easily deployed in a transaction and execute preset functions
when called by another account. It provides convenience for users
because it allows for trusted transactions between users without a
third party. Specifically, in Ethereum, two types of accounts existed:
external accounts controlled by users and contract accounts with
code stored together. We can get a transaction graph if we abstract
the account as a node and the transaction as an edge.

The approach in [7] firstly makes a systematic investigation of
Ethereum via graph analysis. This work studies the characteris-
tics (degree distribution, clustering coefficients, etc.) of transaction
graphs on Ethereum and proposes a rule-based anomaly detection
method. Specifically, it aims to detect accounts that have created
massive abnormal smart contracts and consumed a lot of resources.
And the proposed method mainly leverages expert knowledge to
choose some thresholds for account behavior features and detect
anomalies according to predefined rules. This method is simple
and useful. The results provide some insights into the behavior
pattern of accounts in Ethereum. However, it could only detect
some relatively simple abnormal behaviors and requires extensive
tuning efforts. For phishing scams with complex behavior patterns,
it is difficult to apply in practice.

SIEGE: Self-Supervised Incremental Deep Graph Learning for Ethereum Phishing Scam Detection MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada

When comparing Ethereum and Bitcoin, it should be noted that
there is no concept of "accounts" or "balance" for Bitcoin. The basic
block of Bitcoin is the unspent transaction output (UTXO), and
the transaction in Bitcoin can have multiple outputs and inputs,
while the transaction in Ethereum is 1-on-1. This is part of the
reason why we studied the Ethereum transaction graph. Although
it is not feasible to use SIEGE directly for Bitcoin phishing scam
detection, we describe two possible solutions here, which may
be our future research directions. First, if we change our goal to
phishing scam transaction detection, some works like [48] build
the Bitcoin transaction graph with the transaction as a node and
the Bitcoin flow as an edge, then our model will become applicable.
Second, works like [14, 30, 31, 38] employ address clustering and
de-anonymization techniques to transform the Bitcoin transaction
graph into a user graph, similar to the Ethereum transaction graph.
Our model can also work with such a user graph.

2.1.2 Phishing scams in Ethereum. The thriving Ethereum market
has also bred a lot of criminal activities like phishing scam [5, 8, 20,
25, 50], Ponzi scheme [1, 9], ransomware [10], etc. There are two
main categories of existing methods for the phishing scam detection
problem on Ethereum. The former mainly employ shallow models
such as (i) traditional machine learning methods with dedicated
feature engineering [8], and (ii) some random-walk-based network
embedding methods [50], such as DeepWalk [35], Node2Vec [16],
etc. The latter applies some deep graph models like the graph con-
volutional network [24] (GCN) based methods. These methods
show pretty good performance in their data collected. However,
two problems limit the practical application of these methods. (i)
Most existing methods are transductive, making predictions in
a single fixed graph. Therefore, they do not naturally generalize
to unseen nodes or sub-graphs, and for a high-throughput active
blockchain platform like Ethereum, an inductive method to process
fast-evolving in-coming transaction data is in need. (ii) A biased
sampling process is employed in graph data generation. To alle-
viate the label scarcity problem and scalability problem, existing
methods [5, 25] generate the graph data by sampling nodes and
edges related to labeled positive data. For example, these works
make a 2-hop BFS search with labeled phishing scam nodes as the
start and then choose the largest weakly connected component as
training graph data, which will result in different node distributions
between the sampled graph and the original graph. Hence, this pa-
per proposes SIEGE to learn useful node representations from the
original unsampled transaction graph. It is also inductive and can
be used for phishing node detection in an entirely new transaction
graph.

Another issue is how these phishing scam detection results could
be actually employed in real-world scenarios to prevent more phish-
ing scams. We explain it from two aspects: (1) After phishing scam
accounts are detected, the cryptocurrencies involved in crimes could
be confiscated by the government or other orderly organizations;
(2) Since Ethereum transaction records are public, users can see all
the transaction records. Although the phishing scam accounts are
able to transfer their cryptocurrencies out, we could send alerts to
corresponding users or release all phishing scam information on
a website. In this way, we could also leverage the phishing scam
detection results.

2.2 Deep Graph Learning
Deep learning has been a great success in computer vision, speech
recognition, and natural language processing due to its powerful
representation learning capability. Recently, increasing attention
has been paid to how to apply deep learning for non-euclidean
data like graphs, i.e., graph neural networks, which is widely used
in various tasks, such as social network [13], protein interface
prediction [15], knowledge graph embedding [46], etc. Graph neural
networks are rapidly improving and could be mainly divided into
spectral and spatial methods. Spectral methods [4, 24] are based on
the spectral representation of a graph. And spatial methods [17, 44]
are based on the information aggregation and transformation from
local neighborhood nodes.

Most GNNs could incorporate the information from node at-
tributes and graph topology. Then the node embedding generated
can be used for downstream tasks such as node classification, link
prediction, graph classification (an extra readout module in need),
etc.

In addition, it should be clarified that existing dynamic graph
neural networks like [11, 34] cannot be employed in this prob-
lem. The key to these models is to learn the temporal relationships
in a graph series by a temporal encoder (like LSTM [19]). How-
ever, these models are trained in a sequential approach due to the
usage of an RNN-like structure. This will result in all trainable
parameters in each time step needing to be saved until the end of
back-propagation. This is unacceptable due to the huge data volume
in this problem. Besides, most of them are supervised methods and
are not suitable when the label scarcity problem is severe.

3 METHODOLOGY
In this section, we first briefly describe the Ethereum transaction
graph data and formalize our problem. Then, we explain how the
self-supervised learning module works, divided into two parts: spa-
tial pretext task and temporal pretext task. In the last, we introduce
our graph incremental learning module and make a summary of
SIEGE.

3.1 Data Description
In Ethereum, all activities are completed in the form of transactions.
The two parties involved in a transaction are called accounts. There
are mainly two kinds of accounts in Ethereum: (i) externally owned
accounts (EOA) and (ii) smart contracts. Their main difference is
that smart contracts usually contain executable codes deployed
by users for certain purposes [7]. Then, the Ethereum transaction
can be easily formulated into a transaction graph, whose nodes are
accounts and edges denote transactions.

The transaction graph is extremely large due to the huge user
number and active Ethereum transactions. We are not able to di-
rectly apply graph learning algorithms on the entire transaction
graph to perform intelligent detection from the perspective of com-
putational overhead. It is also why we need an efficient training
method to handle the large graph. The proposed method, detailed
later, will split the graph in temporal order and utilizes an incre-
mental graph learning strategy.

MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada Shucheng Li, Runchuan Wang, Hao Wu, Sheng Zhong, and Fengyuan Xu

Ethereum
transaction

graph

Graph split 1

Graph split 2

…
…

Graph split N

GNN2

GNN1

GNNN

Test data Graph
construction

Node embeddings for
downstream task

Stage 1: GNN pre-training

Stage 2: Downstream task

Final GNN encoder

(parameters frozen)

…
…

Figure 1: The overall workflow of SIEGE, where blue dash
lines stand for the spatial pretext task, and red ones stand
for the temporal pretext task. For GNN models from GNN1
to GNN𝑁 in the pre-training stage, the parameters of the
previous encoder will be used to initialize the next one. The
downstream task denotes the phishing scam nodes classifi-
cation task.

For the phishing scam detection task, in such an Ethereum trans-
action graph, the data labels available are almost negligible com-
pared to the total data volume, as mentioned in Section 1. This is
why we look to SSL technologies for inspiration in the design of
SIEGE.

3.2 Problem Formulation
We first divide the original graph data G into 𝑁 splits {G1,G2, · · · ,
G𝑁 } in the order of block number (same as the temporal order).
For graph split 𝑖 , G𝑖 = (V𝑖 , E𝑖 ,𝑿𝑖), where V𝑖 = {𝑣1, 𝑣2, · · · , 𝑣𝑁𝑖

} is
the set of 𝑁𝑖 nodes, E𝑖 stands for the edge set and 𝑿𝑖 ∈ R |V𝑖 |×𝑑

is the node feature matrix. Moreover, we use 𝑨𝑖 as the adjacency
matrix of graph split 𝑖 , where𝑨𝑖,𝑚,𝑛 = 1 if there is an edge between
node 𝑣𝑖,𝑚 and 𝑣𝑖,𝑛 else 𝑨𝑖,𝑚,𝑛 = 0. To conclude, each graph split is
a directed graph with node attributes.

In our self-supervised learning module, the encoder GNN 𝑔𝑖 ,
could incorporate both the information of graph topology 𝑨𝑖 and
node attributes 𝑿𝑖 , then get the node embeddings 𝒁𝑖 . Our objective
is to minimize the pretext tasks designed and get the final optimized
GNN encoder 𝑔final. Then we freeze the parameters of 𝑔final and
employ 𝑔final in the test graph data to obtain a representation of
the nodes used for the downstream classification task, as illustrated
in Figure 1.

3.3 Self-supervised Learning Module
The core of SSL is obtaining the supervision signal and learning
from the data itself. And the pretext task design determines the
direction and objective of SSL, which is the most important part
of an SSL framework. The design of pretext tasks is mainly devel-
oped from two aspects: generative and contrastive methods [29].
For a graph split aforementioned, a general pretext task could be

vi,m

Regression
loss function

g
zi,m

fspatial
xi,m

Figure 2: An overview of the spatial pretext task in SIEGE,
where 𝑔 is the GNN encoder, and 𝑓spatial is a linear layer.
For the masked node 𝑣𝑖,𝑚 , 𝒙𝑖,𝑚 and 𝒛𝑖,𝑚 denote the initial
attributes and the node embedding through 𝑔, respectively.

formulated as follows,

min
𝑔

Lpretext (𝑨,𝑿 , 𝑔) =
∑︁

𝑣𝑖 ∈Vpretext

𝐷 (𝑔(G)𝑣𝑖 , 𝑦pretext𝑖) (1)

where 𝑔 is the GNN encoder (feature extractor), and the 𝑦pretext𝑖
stands for the ground truth of node 𝑣𝑖 acquired by the pretext task.
G is one of the graph splits. In addition, Vpretext is the node set
used in the pretext task, and the discriminatorD is used to measure
the relationship between the node embedding of 𝑣𝑖 and 𝑦pretext𝑖 .
It should be noted that our self-supervised model involves only
node-level pretext tasks. As for edge-, sub-graph- or graph-level
pretext tasks, we leave them for future work. After pre-training
with the pretext task, the parameters of GNN encoder 𝑔 will be
frozen to generate the node embeddings 𝒁 = {𝒛1, 𝒛2, · · · , 𝒛𝑁test } for
an input test graph Gtest, which will be fed into the final classifier
for the downstream task.

We call this case a transductive setting, i.e., Gtest and G are the
same. If they are different, we call the case an inductive setting.
Their main difference is that in an inductive scenario, the learned
GNN model will be employed in a new graph.

For the phishing scam detection problem in this paper, we con-
clude three prerequisites for a well-designed pretext task as follows,

(1) the extracted data labels should reflect the characteristics of
the data itself;

(2) it should be possible for users to obtain data labels with
relatively low time complexity. Otherwise, due to the huge
volume of Ethereum transaction data, the time cost could be
unacceptable;

(3) domain knowledge is an important and valuable inspiration
for pretext tasks. But it is also important to consider general-
ization issues and avoid overuse of domain knowledge when
designing pretext tasks, which is likely to overfit the model.

Then, we detail the design of our spatial and temporal pretext
tasks.

3.3.1 Spatial pretext task. For the nodes in the Ethereum trans-
action graph, we hope that the learned node embeddings could
incorporate both their initial attributes and contexts in the graph
(i.e., information on surrounding nodes and structures). To effi-
ciently capture this kind of spatial information, inspired by [21],
we design a spatial pretext task, which is illustrated in Figure 2.
First, for a certain graph split G𝑖 , we first mask some node initial
attributes in G𝑖 by setting the corresponding attributes to zero.
Then we calculate its node embedding 𝒁𝑖 = {𝒛𝑖,1, 𝒛𝑖,2, · · · , 𝒛𝑖,𝑁𝑖

}
through GNN model 𝑔. Finally, for a masked node 𝑣𝑖,𝑚 , we employ

SIEGE: Self-Supervised Incremental Deep Graph Learning for Ethereum Phishing Scam Detection MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada

its learned node embedding 𝒛𝑖,𝑚 to predict its initial attributes 𝒙𝑖,𝑚 .
We formalize this procedure as below:

Lspatial (𝑨𝑖 ,𝑿𝑖 , 𝑔) =
1

|Vmasked
𝑖

|

∑︁
𝑣𝑖,𝑚∈Vmasked

𝑖

∥𝒛𝑖,𝑚 − 𝑓spatial (𝒙𝑖,𝑚)∥2 (2)

, whereVmasked
𝑖

denotes the masked node set in G𝑖 . 𝑓spatial is the
linear transformation layer. 𝒛𝑖,𝑚 and 𝒙𝑖,𝑚 are the node embedding
and the initial attributes of 𝑣𝑖,𝑚 , respectively.

As reported in Section 1, in addition to the basic transfer func-
tionality, smart contracts can be deployed with some executable
codes for different purposes, which is the core characteristic of
Ethereum. Various applications of smart contracts, such as issuing
tokens, auctions, lotteries, gambling, games, etc., have been com-
mon on Ethereum. Moreover, some phishing scam nodes are also
smart contracts. Therefore, it is important and helpful to leverage
the information from smart contracts to detect those phishing scam
nodes. To capture different functionalities of smart contract nodes,
we design another additional spatial pretext task to predict their
functionalities.

Specifically in the graph split G𝑖 , for smart contract node set
V𝑠𝑐
𝑖

and their initial attributes 𝑿𝑠𝑐
𝑖
, we first perform clustering on

these smart contract nodes and obtain cluster index 𝐶𝑚 for each
node 𝑣𝑠𝑐

𝑖,𝑚
. Then we predict 𝐶𝑚 with its node embedding 𝒛𝑠𝑐

𝑚,𝑖
. The

procedure is formulated as

Lsc
spatial (𝑨𝑖 ,𝑿𝑖 , 𝑔) =

1
|V𝑠𝑐

𝑖
|

∑︁
𝑣𝑠𝑐
𝑖,𝑚

∈V𝑠𝑐
𝑖

𝑙 (𝑓 scspatial (𝒛
𝑠𝑐
𝑖,𝑚),𝐶𝑚) (3)

, where 𝑓 scspatial is a linear layer and 𝑙 is the cross-entropy loss func-
tion.

It should be noted that most smart contracts on Ethereum could
be grouped into several categories from the perspective of deploy-
ment purpose [40], such as finance, game, wallet, social, etc. There-
fore this step would not introduce much noise.

3.3.2 Temporal pretext task. The design of our temporal pretext
task is mainly motivated by two insights:

(1) In our spatial pretext task, for a node in the Ethereum trans-
action graph, we have considered its initial attributes and
context information from the graph. On top of that, to detect
phishing scam nodes, how the behavior of this node evolves
in the time dimension could also be important and valuable.

(2) As mentioned before, the whole Ethereum transaction graph
is too large and growing rapidly, we are not able to train it
with GNN at once. As a solution, we split the whole graph in
temporal order to reduce the memory cost. However, such a
division breaks the overall graph structure and is likely to
cause information loss.

Therefore, we hope to design a temporal pretext task that could
simultaneously (i) learn the temporal variation of node behaviors
and (ii) reduce the information loss caused by the graph division.

Specifically, for two adjacent graph splits G𝑖 and G𝑖+1, since each
graph split contains a large amount of transaction data, there must
be a certain percentage of nodes which appear in both graph splits.
This set of nodes forms a bridge between the two adjacent graph
splits. We use this overlap node set V𝑖,𝑜 = V𝑖 ∩V𝑖+1 to model the

x̂i+1,n xi+1,n

zi,m

vi+1,nvi,m

g

ftemporal

Regression
loss function

with the same
account address

Figure 3: An overview of the temporal pretext task in SIEGE,
where 𝑔 is the GNN encoder, and 𝑓temporal is a linear layer.
Two nodes 𝑣𝑖,𝑚 ∈ V𝑖 and 𝑣𝑖+1,𝑛 ∈ V𝑖+1 have the same account
address in the Ethereum. 𝒙̂𝑖+1,𝑛 denotes the predicted node
attributes of 𝑣𝑖+1,𝑛 , and 𝒛𝑖,𝑚 is the node embedding of 𝑣𝑖,𝑚
through 𝑔.

relationship between the two graph splits in our temporal pretext
task.

As shown in Figure 3, for two nodes 𝑣𝑖,𝑚, 𝑣𝑖+1,𝑛 ∈ V𝑖,𝑜 (𝑣𝑖,𝑚 ∈ V𝑖

and 𝑣𝑖+1,𝑛 ∈ V𝑖+1) with the same account address in Ethereum, we
try to make the following two vectors similar:

(1) for node 𝑣𝑖,𝑚 , the prediction of the future node attributes
𝒙̂𝑖+1,𝑛 , which is calculated from its learned node embedding
𝒛𝑖,𝑚 ;

(2) for node 𝑣𝑖+1,𝑛 in the future, its node attributes 𝒙𝑖+1,𝑛 .
Formally, we minimize Ltemporal as follows,

Ltemporal (𝑨𝑖 ,𝑿𝑖 ,𝑨𝑖+1,𝑿𝑖+1, 𝑔) =
1

|V𝑖,𝑜 |
∑︁

𝑣𝑖,𝑚,𝑣𝑖+1,𝑛∈V𝑖,𝑜

∥ 𝑓temporal (𝒛𝑖,𝑚) − 𝒙𝑖+1,𝑛 ∥2 (4)

3.4 Graph Incremental Learning Module
Due to the huge and rapidly increasing data volume of Ethereum
transactions, it is not practical to feed all transaction data into the
model at once. It is why we utilize an incremental training method
by feeding only partial training data at a time, which alleviates the
data scalability problem.

Specifically in this module, for 𝑣𝑖,𝑚 ∈ V𝑖 and 𝑣𝑖−1,𝑛 ∈ V𝑖−1, if
𝑣𝑖−1,𝑛 has the same account address with 𝑣𝑖,𝑚 in the Ethereum, we
will concatenate its node embedding 𝒛𝑖−1,𝑛 with 𝒙𝑖,𝑚 as the updated
initial node attribute of 𝑣𝑖,𝑚 . Such a concatenation operation could
be seen as a “connection” between adjacent graph splits, to make
nodes in G𝑖 aware of their state in G𝑖−1. The reason for choos-
ing node embedding 𝒛𝑖−1,𝑛 but not raw attributes 𝒙𝑖−1,𝑛 of 𝑣𝑖−1,𝑛
is because the node embedding could contain information from
its neighborhood (through GNN forward propagation), therefore
provide larger receptive-field also more information to the node
𝑣𝑖,𝑚 .

As for GNN encoders, we employ learned 𝑔𝑖−1 to initialize 𝑔𝑖 .
In the following, we will briefly conclude SIEGE in several steps

with both the self-supervised learning module and the graph incre-
mental learning module.

MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada Shucheng Li, Runchuan Wang, Hao Wu, Sheng Zhong, and Fengyuan Xu

Table 1: Initial node attributes generation process. For each
node on the graph, we mainly consider three aspects of in-
formation: (1) graph structure, (2) transaction amount, and
(3) transaction time. In/out transactions means transactions
to/from the target nodes, respectively.

Type Initial attributes

graph structure in/out degree; number of in/out transactions;

transaction amount sum/average of all/in/out transactions amount;

transaction time
span/frequency of all/in/out transactions;
mean/min/max/std/median of
all/in/out transaction intervals;

others is smart contract or not;
repeated transaction ratio of in/out transactions;

Table 2: Data statistics for the 5 graph splits. "Overlap" refers
to the ratio of nodes in the current split which also appear
in the next split. It will be used in the temporal pretext task.

Split #Nodes #Edges Overlap #Phish

1 5,553,012 12,327,037 0.312 325
2 4,481,616 8,315,943 0.268 418
3 5,314,362 10,523,392 0.304 524
4 5,316,322 12,513,016 0.371 587
5 4,442,089 8,763,528 - 477

(1) For G = {G1,G2, · · · ,G𝑁 }, with each G𝑖 = (𝑨𝑖 ,𝑿𝑖).
(2) In a graph split G𝑖 . Update 𝑿𝑖 with 𝒁𝑖−1 and initialize 𝑔𝑖

with 𝑔𝑖−1.
(3) Obtain node embeddings 𝒁𝑖 = 𝑔𝑖 (𝑨𝑖 ,𝑿𝑖) through the GNN

encoder 𝑔𝑖 .
(4) With node embeddings 𝒁𝑖 and GNN encoder 𝑔𝑖 , minimize

loss Lspatial in Equation (2), loss Lsc
spatial in Equation (3) and

loss Ltemporal in Equation (4).
(5) Obtain the final GNN encoder 𝑔final.
It should be noted that in step (4), the spatial loss and the tempo-

ral loss are jointly optimized. And the parameters of the final GNN
encoder 𝑔final will then be frozen to be used as a feature extractor
in the downstream phishing scam classification task.

4 EXPERIMENTS
In this section, we evaluate the effectiveness of SIEGE on Ethereum
transaction data. Firstly, we introduce our experimental setup. Sec-
ondly, we present our main experimental results with discussion
and analysis, including both transductive and inductive settings.
And we also conduct ablation experiments to investigate the ef-
fectiveness and necessity of each module. Then, we compare our
approach with some anomaly detection methods. Finally, we make
a visualization for the learned node embeddings and initial node
attributes.

4.1 Setup
4.1.1 Data collection and pre-processing. We collect transactions
on Ethereum that took place from January 2018 to July 2018, which

is because the labeled phishing scam samples during this period
are relatively more than others. To make experiments more clear,
we detail our data preparation steps as follows:

(1) There are two kinds of transactions on Ethereum: (i) exter-
nal transactions launched by user accounts and (ii) internal
transactions launched by smart contract accounts. Since both
(i) and (ii) have significant impacts on the transaction graph,
we include both of them in our dataset.

(2) We then filter out those unsuccessful and zero-value money
transfer transactions, which are meaningless for this task.
And we get 224,377,964 transactions in total.

(3) According to block number (equivalently, timestamp), we
divided the collected transaction data into 5 splits.

(4) As no available node attributes could be found in the orig-
inal data for each transaction data split, we calculate the
initial node attributes from several important aspects: graph
structure, transaction amount, and transaction time. Then
we get a directed graph with node attributes, transformed
from each data split.

(5) Finally, for each graph split, we remove isolated nodes of
them. Then we obtain the 5 graph splits used in our experi-
ments.

For the node initial attributes generation process in step (4) above,
we list them in Table 1. More detailed statistics of graph splits are
shown in Table 2.

For phishing scam samples used for evaluation, we collect la-
bels from the Ethereum browser1 and some blacklists released by
companies2. In all, we obtained 6588 unique Ethereum account IDs
related to phishing scams.

4.1.2 Hyperparameter settings and baseline models. For the trans-
ductive setting, we train and evaluate our method in the same graph
split. For the inductive setting, we train our model in G𝑖 and eval-
uate it in G𝑖+1 (without any training in G𝑖+1). In each graph split,
we randomly sample some nodes without phishing scam labels as
normal nodes. In each graph split, we set the number of normal
node labels to be three times that of phishing scam nodes. Then
we conduct evaluation on these nodes with labels, train/val/test
sets are randomly split with the ratio of 50%/20%/30%. It should be
noted that we chose a relatively large test set ratio due to the small
number of labels.

We choose a 2-layer GraphSage [17] with mean-pooling aggre-
gator as the backbone GNN, which is inductive and contains a
neighborhood sampling mechanism which could help to improve
memory and computational efficiency. We employ logistic regres-
sion as our binary classifier.

In the transductive setting, we compared SIEGE with several
baseline models as follows,

• Raw features described in the Table 1;
• DeepWalk algorithm [35], an unsupervised graph embedding
algorithm without consideration of node attributes. It aims
to make embeddings of nodes similar when these nodes have
similar topological positions on the graph;

1https://etherscan.io/
2https://github.com/CryptoScamDB/blacklist

SIEGE: Self-Supervised Incremental Deep Graph Learning for Ethereum Phishing Scam Detection MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada

Table 3: Prediction results in the transductive setting in terms of precision (P), recall (R), F1 score (F-1) and AUC. The results
are averaged over 5 runs in all graph splits (with the standard deviation values). "no-incremental" means that we do not use
incremental training.

Method P R F-1 AUC

Raw features 0.553 ± 0.03 0.504 ± 0.03 0.527 ± 0.04 0.684 ± 0.04
DeepWalk [35] 0.443 ± 0.02 0.688 ± 0.01 0.539 ± 0.03 0.701 ± 0.02
DeepWalk+features 0.494 ± 0.02 0.656 ± 0.02 0.564 ± 0.02 0.717 ± 0.01

GraphSage [17] 0.563 ± 0.01 0.752 ± 0.02 0.644 ± 0.03 0.779 ± 0.02
DGI [45] 0.580 ± 0.02 0.752 ± 0.04 0.655 ± 0.01 0.786 ± 0.02

SIEGE 0.640 ± 0.02 0.824 ± 0.01 0.720 ± 0.01 0.835 ± 0.01
SIEGE-no-incremental 0.624 ± 0.02 0.808 ± 0.01 0.704 ± 0.01 0.823 ± 0.01

Table 4: Prediction results in the inductive setting in terms of precision (P), recall (R), F1 score (F-1) and AUC. Since we evaluate
the model in the next split (with respect to the training split), we run our experiments in the first 4 graph splits. The results are
averaged over 4 runs in different graph splits (with the standard deviation values). "no-incremental" means that we do not use
incremental training.

Method P R F-1 AUC

GraphSage [17] 0.537 ± 0.00 0.760 ± 0.01 0.629 ± 0.01 0.771 ± 0.02
DGI [45] 0.536 ± 0.02 0.784 ± 0.02 0.636 ± 0.02 0.779 ± 0.03

SIEGE 0.610 ± 0.01 0.824 ± 0.00 0.701 ± 0.01 0.825 ± 0.01
SIEGE-no-incremental 0.614 ± 0.01 0.800 ± 0.01 0.694 ± 0.02 0.816 ± 0.01

• The combination of DeepWalk node embeddings and raw
features;

• GraphSage, trained with the contrastive pretext task de-
scribed in [17];

• DGI [45], a self-supervised method through maximizing the
mutual information between local patch representations and
high-level graph representation.

For the inductive setting evaluated in an entirely new graph, the
node embeddings generated by DeepWalk will become rotated with
respect to the original embedding space, as pointed out in [17], so
we do not use DeepWalk baselines in this setting.

The Adam [23] is used as our optimizer. We search the learning
rate from {0.01, 0.001, 0.0001}. We set the dropout ratio to 0.5. The
hidden size is searched from {32, 64, 128, 256}. The weight decay
rate is set to 5𝑒−4. The mask ratio in the spatial pretext task is
set to 0.15. The clustering algorithm for smart contract nodes in
Section 3.3 is K-means and K is searched from {5, 6, 7, 8, 9, 10}. For
mini-batch training, the batch size is set to 512. For GraphSage,
we use mean-pooling as the aggregator. For DGI, following [45],
we set the two-layer GCN and three-layer GraphSage-GCN as the
encoders in transductive and inductive settings, respectively.

4.1.3 Evaluation metrics. After we get the final node embeddings,
the phishing scam detection problem becomes a binary classifica-
tion problem. In our experiments, we use four metrics to evaluate
the model performance: (i) Precision, which indicates the percent-
age of actual phishing scam nodes among the nodes we detected.
(ii) Recall, which denotes the proportion of our detected phishing
scam nodes among all phishing scam nodes. (iii) F-1 score. It con-
siders both the precision and recall scores. (iv)AUC, the area under
the ROC curve, is typically used in binary classification tasks.

4.1.4 Hardware of running experiments. We run our experiments
in a single machine with 4 GPUs of TITAN Xp (12GB of RAM). OS
version: Ubuntu 16.04.4 LTS, and CUDA version: 11.0.

4.2 Results
Our results for transductive and inductive settings are shown in
Table 3 and Table 4. Due to the imbalanced data, we should pay
more attention to the F-1 score and AUC score. As shown in Table
3 and Table 4, SIEGE outperforms baselines by a significant margin.
For the transductive setting, SIEGE exceeds baselines by about
6% ~19% in the F-1 score and about 5% ~15% in the AUC score,
which strongly demonstrates the effectiveness of our model. The
comparison with GraphSage and DGI, where contrastive pretext
tasks are used, demonstrates the superiority of our spatial and
temporal pretext tasks.

We also tried to remove the incremental learning module from
SIEGE. The comparison with the original model shows that the
incremental learning method is also helpful for the detection of
phishing scam nodes. And SIEGE without incremental training also
outperforms baselines, which demonstrates the effectiveness of our
SSL modules.

For the inductive setting, both SIEGE and baselines have a slight
performance drop, probably due to a slight deviation in the data
distribution for evaluation. We could also find that the SIEGE out-
performs baselines by more than 6% in the F-1 score and more than
4% in the AUC score, further demonstrating the effectiveness of our
model when applied in inductive scenarios.

MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada Shucheng Li, Runchuan Wang, Hao Wu, Sheng Zhong, and Fengyuan Xu

Table 5: Ablation study of SIEGE in the transductive setting
in terms of precision (P), recall (R), F1 score (F-1) and AUC.
"no-temporal" means that we do not use the temporal pretext
task, the same for "no-spatial".

Method P R F-1 AUC

SIEGE 0.640 0.824 0.720 0.835
SIEGE-no-spatial 0.530 0.568 0.548 0.700
SIEGE-no-temporal 0.620 0.640 0.630 0.755

Table 6: Comparison of SIEGE and anomaly detection base-
lines in the transductive setting in terms of precision (P),
recall (R), F1 score (F-1) and AUC.

Method P R F-1 AUC

KNN [37] 0.495 0.784 0.607 0.759
PCA [41] 0.425 0.632 0.508 0.674
LOF [2] 0.388 0.584 0.467 0.640
One-class SVM [39] 0.412 0.632 0.498 0.666
Isolation Forest [27] 0.476 0.712 0.571 0.726
AutoEncoder 0.422 0.624 0.503 0.670
ECOD [26] 0.495 0.800 0.612 0.765

SIEGE 0.640 0.824 0.720 0.835

4.3 Ablation Study
We performed an ablation study for the SSL module of SIEGE. As
shown in Table 5, it could be found that both the spatial pretext
task and temporal pretext task are important for SIEGE. Specifically,
comparing the temporal pretext task (about 9% F-1 score drop after
removal) and the spatial pretext task (about 17% F-1 score drop after
removal), we find that the spatial pretext task could be relatively
more important, which indicates that maybe the spatial relationship
has a larger impact on the phishing scam detection problem.

4.4 Results with Anomaly Detection Baselines
Since the phishing scam detection task could also be understood
as an anomaly detection task, which aims to detect phishing scam
nodes as outliers.

Therefore in this section, we further compared SIEGEwith anom-
aly detection baselines, including both classic anomaly detection
methods like KNN [37], PCA [41], LOF [2], One-class SVM [39], Iso-
lation Forest [27], AutoEncoder, and also recently proposed models
like ECOD [26]. For these baselines, we employ anomaly detection
library [52] as the implementation. Other experimental settings are
kept the same with Section 4.1.

As shown in Table 6, SIEGE could outperform anomaly detection
baselines by more than 10% in the F-1 score and more than 7% in
the AUC score. And among these anomaly detection methods, the
performance of ECOD is the best. These results further demonstrate
the superiority and effectiveness of SIEGE.

4.5 Visualization
In this section, we choose the first two Ethereum transaction graph
splits in Table 2 to make a feature visualization analysis, to help
further understand the quality of the node embeddings learned by

Figure 4: Features visualization of the first two Ethereum
transaction graph splits by t-SNE [43]. Left: node initial at-
tributes;Middle left: learned node embeddings by SIEGE at
1st epoch; Middle right: learned node embeddings by SIEGE
at 5th epoch; Right: learned node embeddings by SIEGE at
50th epoch. Red points stand for phishing scam nodes and
blue points are normal nodes. To make the figure clear, we
limit the number of points to about 400 and the ratio of nor-
mal nodes to phishing nodes is about 3:1.

SIEGE. For both the two graph splits, we visualize their initial node
attributes and their learned node embeddings by SIEGE at different
epochs. We use t-SNE [43] as the visualization algorithm. As shown
in Figure 4, for the visualization of initial node attributes (left),
phishing/normal nodes are difficult to distinguish. After training by
SIEGEwith several epochs (middle left andmiddle right), the learned
embeddings of phishing nodes and normal nodes start to aggregate.
When the training of SIEGE is close to convergence (right), we can
separate the aggregated phishing nodes and normal nodes more
easily. The visualization results in this section illustrate the training
process and the high quality of the learned node representations
by SIEGE.

5 CONCLUSION
This paper aims to detect phishing scams on Ethereum. We pro-
pose SIEGE - a self-supervised deep graph learning method with
an incremental training mechanism to address the label scarcity
and the data scalability challenges. In our self-supervised learning
module, two pretext tasks are used to extract spatial and tempo-
ral information in the Ethereum transaction graph. Our extensive
experimental results on a large-scale Ethereum transaction graph
dataset have shown the superiority of our method compared to
baseline models. The ablation study also shows the effectiveness of
the self-supervised learning module and the incremental training
mechanism. SIEGE could be useful in reality for phishing scam
detection to reduce financial losses and lower risks, to maintain a
healthier environment for Ethereum.

ACKNOWLEDGMENTS
This work was supported in part by NSFC under Grants 62341201,
62272224, 61872176, and 62272215, in part by the Leading Edge
Technology Program of Jiangsu Natural Science Foundation under
Grant BK20202001, and in part by the Science Foundation for Youths
of Jiangsu Province under Grant BK20220772.

SIEGE: Self-Supervised Incremental Deep Graph Learning for Ethereum Phishing Scam Detection MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada

REFERENCES
[1] Massimo Bartoletti, Salvatore Carta, Tiziana Cimoli, and Roberto Saia. 2020.

Dissecting Ponzi schemes on Ethereum: identification, analysis, and impact.
Future Generation Computer Systems 102 (2020), 259–277.

[2] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. 2000.
LOF: Identifying Density-Based Local Outliers. In Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data (Dallas, Texas, USA)
(SIGMOD ’00). Association for ComputingMachinery, New York, NY, USA, 93–104.
https://doi.org/10.1145/342009.335388

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
In Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/
hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

[4] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral
Networks and Locally Connected Networks on Graphs. In 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-
16, 2014, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).
http://arxiv.org/abs/1312.6203

[5] Liang Chen, Jiaying Peng, Yang Liu, Jintang Li, Fenfang Xie, and Zibin Zheng.
2021. Phishing Scams Detection in Ethereum Transaction Network. ACM Trans.
Internet Techn. 21, 1 (2021), 10:1–10:16. https://doi.org/10.1145/3398071

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. 2020.
A Simple Framework for Contrastive Learning of Visual Representations. In
Proceedings of the 37th International Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event (Proceedings of Machine Learning Research, Vol. 119).
PMLR, 1597–1607. http://proceedings.mlr.press/v119/chen20j.html

[7] Ting Chen, Zihao Li, Yuxiao Zhu, Jiachi Chen, Xiapu Luo, John Chi-Shing Lui,
Xiaodong Lin, and Xiaosong Zhang. 2020. Understanding Ethereum via Graph
Analysis. ACM Trans. Internet Techn. 20, 2 (2020), 18:1–18:32. https://doi.org/10.
1145/3381036

[8] Weili Chen, Xiongfeng Guo, Zhiguang Chen, Zibin Zheng, and Yutong Lu. 2020.
Phishing ScamDetection on Ethereum: Towards Financial Security for Blockchain
Ecosystem. In Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI 2020, Christian Bessiere (Ed.). ijcai.org, 4506–4512.
https://doi.org/10.24963/ijcai.2020/621

[9] Weili Chen, Zibin Zheng, Jiahui Cui, Edith C. H. Ngai, Peilin Zheng, and
Yuren Zhou. 2018. Detecting Ponzi Schemes on Ethereum: Towards Health-
ier Blockchain Technology. In Proceedings of the 2018 World Wide Web Conference
on World Wide Web, WWW 2018, Lyon, France, April 23-27, 2018, Pierre-Antoine
Champin, Fabien Gandon, Mounia Lalmas, and Panagiotis G. Ipeirotis (Eds.).
ACM, 1409–1418. https://doi.org/10.1145/3178876.3186046

[10] Oscar Delgado-Mohatar, José María Sierra Camara, and Eloy Anguiano. 2020.
Blockchain-based semi-autonomous ransomware. Future Gener. Comput. Syst.
112 (2020), 589–603. https://doi.org/10.1016/j.future.2020.02.037

[11] Songgaojun Deng, Huzefa Rangwala, and Yue Ning. 2019. Learning Dynamic
Context Graphs for Predicting Social Events. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD
2019, Anchorage, AK, USA, August 4-8, 2019, Ankur Teredesai, Vipin Kumar, Ying
Li, Rómer Rosales, Evimaria Terzi, and George Karypis (Eds.). ACM, 1007–1016.
https://doi.org/10.1145/3292500.3330919

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), Jill
Burstein, Christy Doran, and Thamar Solorio (Eds.). Association for Computa-
tional Linguistics, 4171–4186. https://doi.org/10.18653/v1/n19-1423

[13] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Yihong Eric Zhao, Jiliang Tang, and Dawei
Yin. 2019. Graph Neural Networks for Social Recommendation. In The World
Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019, Ling
Liu, RyenW.White, Amin Mantrach, Fabrizio Silvestri, Julian J. McAuley, Ricardo
Baeza-Yates, and Leila Zia (Eds.). ACM, 417–426. https://doi.org/10.1145/3308558.
3313488

[14] Michael Fleder, Michael S Kester, and Sudeep Pillai. 2015. Bitcoin transaction
graph analysis. arXiv preprint arXiv:1502.01657 (2015).

[15] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. 2017. Protein Interface
Prediction using Graph Convolutional Networks. In Advances in Neural Informa-
tion Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,

and Roman Garnett (Eds.). 6530–6539. https://proceedings.neurips.cc/paper/
2017/hash/f507783927f2ec2737ba40afbd17efb5-Abstract.html

[16] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning
for Networks. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17,
2016, Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal,
Dou Shen, and Rajeev Rastogi (Eds.). ACM, 855–864. https://doi.org/10.1145/
2939672.2939754

[17] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Ro-
man Garnett (Eds.). 1024–1034. https://proceedings.neurips.cc/paper/2017/hash/
5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html

[18] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. 2020.
Momentum Contrast for Unsupervised Visual Representation Learning. In 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020,
Seattle, WA, USA, June 13-19, 2020. Computer Vision Foundation / IEEE, 9726–9735.
https://doi.org/10.1109/CVPR42600.2020.00975

[19] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Comput. 9, 8 (1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

[20] Huawei Huang, Wei Kong, Sicong Zhou, Zibin Zheng, and Song Guo. 2021. A
Survey of State-of-the-Art on Blockchains: Theories, Modelings, and Tools. ACM
Comput. Surv. 54, 2 (2021), 44:1–44:42. https://doi.org/10.1145/3441692

[21] Wei Jin, Tyler Derr, Haochen Liu, Yiqi Wang, SuhangWang, Zitao Liu, and Jiliang
Tang. 2020. Self-supervised Learning onGraphs: Deep Insights andNewDirection.
CoRR abs/2006.10141 (2020). arXiv:2006.10141 https://arxiv.org/abs/2006.10141

[22] Longlong Jing and Yingli Tian. 2021. Self-Supervised Visual Feature Learning
With Deep Neural Networks: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 43,
11 (2021), 4037–4058. https://doi.org/10.1109/TPAMI.2020.2992393

[23] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio
and Yann LeCun (Eds.). http://arxiv.org/abs/1412.6980

[24] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net. https://openreview.net/forum?id=SJU4ayYgl

[25] Sijia Li, Gaopeng Gou, Chang Liu, Chengshang Hou, Zhenzhen Li, and Gang
Xiong. 2022. TTAGN: Temporal Transaction Aggregation Graph Network for
Ethereum Phishing Scams Detection. In WWW ’22: The ACM Web Conference
2022, Virtual Event, Lyon, France, April 25 - 29, 2022, Frédérique Laforest, Raphaël
Troncy, Elena Simperl, Deepak Agarwal, Aristides Gionis, Ivan Herman, and
Lionel Médini (Eds.). ACM, 661–669. https://doi.org/10.1145/3485447.3512226

[26] Zheng Li, Yue Zhao, Xiyang Hu, Nicola Botta, Cezar Ionescu, and George Chen.
2022. Ecod: Unsupervised outlier detection using empirical cumulative distribu-
tion functions. IEEE Transactions on Knowledge and Data Engineering (2022).

[27] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation Forest. In
2008 Eighth IEEE International Conference on Data Mining. 413–422. https:
//doi.org/10.1109/ICDM.2008.17

[28] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Zhaoyu Wang, Li Mian, Jing Zhang, and
Jie Tang. 2020. Self-supervised Learning: Generative or Contrastive. CoRR
abs/2006.08218 (2020). arXiv:2006.08218 https://arxiv.org/abs/2006.08218

[29] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Zhaoyu Wang, Li Mian, Jing Zhang, and
Jie Tang. 2020. Self-supervised Learning: Generative or Contrastive. CoRR
abs/2006.08218 (2020). arXiv:2006.08218 https://arxiv.org/abs/2006.08218

[30] Damiano Di Francesco Maesa, Andrea Marino, and Laura Ricci. 2016. Uncov-
ering the bitcoin blockchain: an analysis of the full users graph. In 2016 IEEE
International Conference on Data Science and Advanced Analytics (DSAA). IEEE,
537–546.

[31] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon
McCoy, Geoffrey M. Voelker, and Stefan Savage. 2016. A fistful of Bitcoins:
characterizing payments among men with no names. Commun. ACM 59, 4 (2016),
86–93. https://doi.org/10.1145/2896384

[32] Satoshi Nakamoto. 2019. Bitcoin: A peer-to-peer electronic cash system. Technical
Report. Manubot.

[33] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training language models to follow instructions with human feedback. Advances
in Neural Information Processing Systems 35 (2022), 27730–27744.

[34] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,
Hiroki Kanezashi, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. 2020.
EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs. In
The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI Press, 5363–5370.

https://doi.org/10.1145/342009.335388
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://arxiv.org/abs/1312.6203
https://doi.org/10.1145/3398071
http://proceedings.mlr.press/v119/chen20j.html
https://doi.org/10.1145/3381036
https://doi.org/10.1145/3381036
https://doi.org/10.24963/ijcai.2020/621
https://doi.org/10.1145/3178876.3186046
https://doi.org/10.1016/j.future.2020.02.037
https://doi.org/10.1145/3292500.3330919
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1145/3308558.3313488
https://doi.org/10.1145/3308558.3313488
https://proceedings.neurips.cc/paper/2017/hash/f507783927f2ec2737ba40afbd17efb5-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/f507783927f2ec2737ba40afbd17efb5-Abstract.html
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/3441692
https://arxiv.org/abs/2006.10141
https://arxiv.org/abs/2006.10141
https://doi.org/10.1109/TPAMI.2020.2992393
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1145/3485447.3512226
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1109/ICDM.2008.17
https://arxiv.org/abs/2006.08218
https://arxiv.org/abs/2006.08218
https://arxiv.org/abs/2006.08218
https://arxiv.org/abs/2006.08218
https://doi.org/10.1145/2896384

MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada Shucheng Li, Runchuan Wang, Hao Wu, Sheng Zhong, and Fengyuan Xu

https://ojs.aaai.org/index.php/AAAI/article/view/5984
[35] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learning

of social representations. In The 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA - August 24
- 27, 2014, Sofus A. Macskassy, Claudia Perlich, Jure Leskovec, Wei Wang, and
Rayid Ghani (Eds.). ACM, 701–710. https://doi.org/10.1145/2623330.2623732

[36] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving language understanding by generative pre-training. (2018).

[37] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. 2000. Efficient Algo-
rithms for Mining Outliers from Large Data Sets. SIGMOD Rec. 29, 2 (may 2000),
427–438. https://doi.org/10.1145/335191.335437

[38] Dorit Ron and Adi Shamir. 2013. Quantitative analysis of the full bitcoin trans-
action graph. In Financial Cryptography and Data Security: 17th International
Conference, FC 2013, Okinawa, Japan, April 1-5, 2013, Revised Selected Papers 17.
Springer, 6–24.

[39] Bernhard Schölkopf, John C. Platt, John C. Shawe-Taylor, Alex J. Smola, and
Robert C. Williamson. 2001. Estimating the Support of a High-Dimensional
Distribution. Neural Comput. 13, 7 (jul 2001), 1443–1471. https://doi.org/10.1162/
089976601750264965

[40] Chaochen Shi, Yong Xiang, Jiangshan Yu, Longxiang Gao, Keshav Sood, and
Robin Ram Mohan Doss. 2022. A Bytecode-based Approach for Smart Contract
Classification. In IEEE International Conference on Software Analysis, Evolution
and Reengineering, SANER 2022, Honolulu, HI, USA, March 15-18, 2022. IEEE,
1046–1054. https://doi.org/10.1109/SANER53432.2022.00122

[41] Mei-Ling Shyu, Shu-Ching Chen, Kanoksri Sarinnapakorn, and LiWu Chang.
2003. A novel anomaly detection scheme based on principal component classifier.
Technical Report. Miami Univ Coral Gables Fl Dept of Electrical and Computer
Engineering.

[42] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. LINE: Large-scale Information Network Embedding. In Proceedings of the
24th International Conference on World Wide Web, WWW 2015, Florence, Italy,
May 18-22, 2015, Aldo Gangemi, Stefano Leonardi, and Alessandro Panconesi
(Eds.). ACM, 1067–1077. https://doi.org/10.1145/2736277.2741093

[43] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, 11 (2008).

[44] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2017. Graph Attention Networks. CoRR abs/1710.10903
(2017). arXiv:1710.10903 http://arxiv.org/abs/1710.10903

[45] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio,
and R. Devon Hjelm. 2018. Deep Graph Infomax. CoRR abs/1809.10341 (2018).
arXiv:1809.10341 http://arxiv.org/abs/1809.10341

[46] Hongwei Wang, Fuzheng Zhang, Mengdi Zhang, Jure Leskovec, Miao Zhao, Wen-
jie Li, and Zhongyuan Wang. 2019. Knowledge-aware Graph Neural Networks
with Label Smoothness Regularization for Recommender Systems. In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019, Ankur Teredesai, Vipin
Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis (Eds.). ACM,
968–977. https://doi.org/10.1145/3292500.3330836

[47] Jinhuan Wang, Pengtao Chen, Shanqing Yu, and Qi Xuan. 2021. TSGN: Trans-
action Subgraph Networks for Identifying Ethereum Phishing Accounts. CoRR
abs/2104.08767 (2021). arXiv:2104.08767 https://arxiv.org/abs/2104.08767

[48] Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I. Weidele, Claudio
Bellei, Tom Robinson, and Charles E. Leiserson. 2019. Anti-Money Laundering
in Bitcoin: Experimenting with Graph Convolutional Networks for Financial
Forensics. CoRR abs/1908.02591 (2019). arXiv:1908.02591 http://arxiv.org/abs/
1908.02591

[49] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 2014 (2014), 1–32.

[50] Jiajing Wu, Qi Yuan, Dan Lin, Wei You, Weili Chen, Chuan Chen, and Zibin
Zheng. 2022. Who Are the Phishers? Phishing Scam Detection on Ethereum via
Network Embedding. IEEE Trans. Syst. Man Cybern. Syst. 52, 2 (2022), 1156–1166.
https://doi.org/10.1109/TSMC.2020.3016821

[51] Qi Yuan, Baoying Huang, Jie Zhang, Jiajing Wu, Haonan Zhang, and Xi Zhang.
2020. Detecting Phishing Scams on Ethereum Based on Transaction Records. In
IEEE International Symposium on Circuits and Systems, ISCAS 2020, Sevilla, Spain,
October 10-21, 2020. IEEE, 1–5. https://doi.org/10.1109/ISCAS45731.2020.9180815

[52] Yue Zhao, Zain Nasrullah, and Zheng Li. 2019. PyOD: A Python Toolbox for
Scalable Outlier Detection. Journal of Machine Learning Research 20, 96 (2019),
1–7. http://jmlr.org/papers/v20/19-011.html

https://ojs.aaai.org/index.php/AAAI/article/view/5984
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/335191.335437
https://doi.org/10.1162/089976601750264965
https://doi.org/10.1162/089976601750264965
https://doi.org/10.1109/SANER53432.2022.00122
https://doi.org/10.1145/2736277.2741093
https://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1809.10341
http://arxiv.org/abs/1809.10341
https://doi.org/10.1145/3292500.3330836
https://arxiv.org/abs/2104.08767
https://arxiv.org/abs/2104.08767
https://arxiv.org/abs/1908.02591
http://arxiv.org/abs/1908.02591
http://arxiv.org/abs/1908.02591
https://doi.org/10.1109/TSMC.2020.3016821
https://doi.org/10.1109/ISCAS45731.2020.9180815
http://jmlr.org/papers/v20/19-011.html

	Abstract
	1 Introduction
	2 Related work
	2.1 Ethereum Phishing Scam Detection
	2.2 Deep Graph Learning

	3 Methodology
	3.1 Data Description
	3.2 Problem Formulation
	3.3 Self-supervised Learning Module
	3.4 Graph Incremental Learning Module

	4 Experiments
	4.1 Setup
	4.2 Results
	4.3 Ablation Study
	4.4 Results with Anomaly Detection Baselines
	4.5 Visualization

	5 Conclusion
	Acknowledgments
	References

