
VIDAR: Data Quality Improvement for Monocular 3D Reconstruction
through In-situ Visual Interaction

Han Gao, Yating Liu, Fang Cao, Hao Wu, Fengyuan Xu∗ and Sheng Zhong

Abstract— 3D reconstruction based on monocular videos has
attracted wide attention, and existing reconstruction methods
usually work in a reconstruction-after-scanning manner. How-
ever, these methods suffer from insufficient data collection
problems due to the lack of effective guidance for users during
the scanning process, which affects reconstruction quality.
We propose VIDAR, which visually guides users with the
streaming incremental reconstructed mesh in data collection for
monocular 3D reconstruction. We propose an incremental mesh
extraction algorithm to achieve lossless fusion of streaming
incremental mesh data via slice-style management for guidance
quality. We also design an incremental mesh rendering algo-
rithm to achieve precise memory reallocation by updating the
buffer in a fill-in-the-blank pattern for guidance efficiency. Be-
sides, we introduce several optimizations on data transmission
and human-computer interaction to improve the overall system
performance. The experiment results on real-world scenes show
that VIDAR efficiently delivers high-quality visual guidance
and outperforms the non-interactive data collection methods
for scene reconstruction.

I. INTRODUCTION

3D scene reconstruction is essential for perceiving natu-
ral environments in augmented/virtual/mixed reality [1]–[3].
With the breakthrough of SLAM technology [4]–[7], vision-
based reconstruction technology has been widely developed
due to its low cost and ease of use, which obtains the 3D
mesh of a target scene with neural networks based on the
monocular video collected by a smartphone.

As the proverb says, Even the cleverest housewife can’t
cook without rice. Such a “reconstruction-after-scanning”
process lacks timely and reliable scanning guidance for users
and therefore blocks users from collecting more complete
data. It seriously harms the reconstruction quality and can not
be solved only at the algorithmic level. As shown in Fig. 1, it
causes three recurring problems because users are confused
about determining whether the scanning data covers every
region (corresponding to ❶), every view (corresponding to
❷), and every detail (corresponding to ❸). Even if users scan
more times, there is not yet an automated technique to merge
multiple meshes for better results.

Given that visual guidance is more convenient and intuitive
for human users, it’s well-suited to provide in-situ feedback
on the scanning process, and the reconstructed mesh is
undoubtedly one of the easiest to understand and use. As Fig.
1 shows, users are able to continuously see the reconstructed
mesh on the screen with the streaming scene data. By
comparing the differences between the mesh and the real

*Fengyuan Xu is the corresponding author.
National Key Lab for Novel Software Technology, Nanjing University,

Nanjing 210023, China

C
on

tin
uo

us
 c

ol
le

ct
in

g 
w

ith
 

in
cr

em
en

ta
l m

es
h 

as
 fe

ed
ba

ck

Traditional (Non-Interactive Scanning)

Collected Data

Streaming Data

Incremental Mesh

V.S.

Lost Regions1

Distorted Regions3
Incomplete Regions2

1

3

2

…

V5

Ours (Interactive Scanning)

Interactive
Guidance

Fig. 1: Comparison between traditional offline recon-
struction process and our interactive process. By con-
stantly sending the mesh reconstructed on the back-end back
to the mobile, users can collect more complete and detailed
data based on this in-situ visual guidance, avoiding the three
problems that easily occur in the traditional way.

world, this interactive scanning process can guide them to
supplementally collect the missing scene data to improve
reconstruction quality.

However, two key challenges exist in this design. The first
challenge is how to achieve precise multi-mesh fusion. A
basic idea is to divide the input video into fragments and
transfer only the reconstructed mesh of the current fragment
each time. However, there are multiple meshes of an area in
supplemental data collection. If each mesh is rendered, there
will be a problem that the real mesh and the wrong historical
mesh exist simultaneously, leading to low reconstruction
quality. Therefore, a mesh fusion scheme is needed to ensure
the interactively reconstructed results are high-quality and
consistent with the real scene.

The second challenge is how to achieve efficient incremen-
tal rendering. SOTA scene reconstruction methods [8]–[10]
use complex neural networks for 3D geometry prediction,
which cannot be run directly on smartphones due to high
computational resource requirements. We adopt the idea
of offloading [11]–[13], which assigns the computation-
intensive tasks (e.g., mesh generation) to edge servers with
higher performance and the rendering tasks to the mobile



side. However, the streaming mesh increases the GPU mem-
ory requirements over time and crashes the rendering. Thus,
we need to design a mesh rendering strategy to optimize GPU
memory management efficiency for smooth reconstruction.

To address these challenges, we propose VIDAR, which
guides users to scan higher quality data in situ for monoc-
ular 3D scene reconstruction with visual feedback. It is
a manner of reconstruction and rendering while scanning
and differs from the traditional paradigm. It fundamentally
solves the reconstruction quality problem of missing data
due to the lack of guidance in data collection. There are
two key technologies in VIDAR. First, an incremental mesh
extraction algorithm. The proposed algorithm utilizes the
characteristics of generating meshes in cubes to achieve slice-
style management and incremental removal and modification
of mesh data, ensuring lossless fusion for multiple historical
meshes and the current mesh. Second, an incremental mesh
rendering algorithm. The proposed algorithm takes advantage
of the fixed generation pattern of faces in the mesh to perform
fill-in-the-blank buffer updates, ensuring that the time to
update the buffer is only related to the current mesh and
reducing significant memory fragmentation.

We additionally introduce several optimizations for sys-
tem performance, including a tolerance threshold for data
transmission, render buffer backup to ensure data synchro-
nization, and interactive prompts for better human-computer
interaction. The experimental results on the ScanNet [14]
dataset and real-world scenes show that compared to the
baseline system, VIDAR enables precise management and
lossless fusion to mesh and can reduce the total mesh data
volume to 60% with a maximum of 7% quality loss in
the case of limited bandwidth. VIDAR enables stable and
timely updating of the rendering buffer, only taking 50ms per
update on average. VIDAR can render a reconstructed mesh
every second to provide instant feedback. To better showcase
VIDAR, we have shared video demos on an anonymous
website 1.

Our contributions are as follows:
• We seek to improve the 3D reconstruction results in

practice from a perspective of data quality of the
monocular video collection, which is complementary
to algorithm-side optimizations. SOTA reconstruction
methods so far cannot address quality issues created by
data collectors.

• VIDAR achieves excellent monocular video collection
by offering in-situ human-friendly quality feedback
to data collectors using smartphones. Thus, a typical
smartphone user is able to act as an expert-level collec-
tor and shoot videos of desired quality, which is critical
when performing large-scale reconstructions in a crowd-
sourcing approach.

• VIDAR realizes such quality feedback via the visual
scene mesh aligned with real-time video contents shown
on the smartphone screen. Under the hood, it is sup-
ported by proposed new edge-assisted interactive re-

1https://moss-3drecon.github.io/VIDAR/

construction architecture, as well as two mobile opti-
mizations to improve the quality and efficiency of visual
mesh guidance on how to collect data.

• We implement VIDAR on smartphones with edge/cloud
assistance and evaluate it on real-world scenes and
users. Experimental results show that VIDAR is able
to continuously update at 1Hz the holistic reconstructed
model on the smartphone for newly-added video frames
and display corresponding visual mesh indications at
20Hz on screen regarding to collectors’ real-time loca-
tion and direction.

II. RELATED WORKS

A. MVS-based Scene Reconstruction

The reconstruction of 3D geometry from 2D images is a
classical problem in computer vision, and one of the most
widely used methods is multi-view stereo (MVS).

MVSNet [15] is a representative learning-based MVS
method to reconstruct 3D geometry, which builds a cost
volume by traditional plane-sweeping [16] based on features
mapped from multiple source images and a reference image
and regularizes the cost volume by 3D CNN. DPSNet [17],
and MVDepthNet [18] focus on how to build the cost
volume. GPMVS [19] sends pairs of images into an encoder-
decoder structure for depth estimation, which inspires Deep-
VideoMVS [9] to introduce ConvLSTM to incorporate more
temporal information.

Atlas [20] is the first to directly regress Truncated Signal
Distance Field(TSDF) from RGB images, which extracts fea-
tures with 2D CNN, projects these features to 3D space, and
predicts TSDF values by 3D CNN. NeuralRecon [8] predicts
TSDF values with coarse-to-fine structure and introduces a
3D gated recurrent unit (GRU) to help fuse local features into
global space instead of traditional TSDF fusion methods.
TransformerFusion [21] and VoRTX [22] both introduce
the Transformer [23] structure to fuse multi-view features.
3DVNet [24] and SimpleRecon [10] combine the advantages
of these two types of methods.

Most of the methods mentioned above only run in real-
time on desktop GPUs. If we directly deploy them on mobile
platforms, the considerable overhead on GPU memory (up
to 10+ GB) makes it impractical to view the mesh instantly.

B. Mobile Scene Reconstruction

Some early works on mobile scene reconstruction [25]
[26] are implemented on a particular mobile phone prototype,
such as Google’s Project Tango Tablet. [27]–[29] estimate
metric scale with inertial sensors on mobile phones to per-
form scene reconstruction. Mobile3DRecon [30] introduces
a pipeline for real-time volumetric surface reconstruction
directly on mobile devices, which utilizes a multi-view semi-
global matching method to calculate the initial depth map
and a CNN to optimize the depth map noise.

Due to factors such as computing resources, storage re-
sources, and battery energy on the mobile side, mobile scene
reconstruction methods sacrifice reconstruction quality and
limit the scale of the reconstructed scene.

https://moss-3drecon.github.io/VIDAR/


cube1 cube2 cube3 cube4

0 0 0 0
cube1 cube3 cube4

0 0 0
cube1 cube3 cube4

0 0 0
cube1 cube3 cube4 cube5

Delete cube2

Modify cube3

Add cube5

Initial

(a) Images Capture (b) Key frame Selection

(f) Displayed Mesh (e) Incremental Mesh Rendering (d) Incremental Mesh Extraction

543
21

4
1 (c) Scene Reconstruction NNs

4
1

Mobile Device Edge Server

Mesh Fusion

Incremental
Mesh

Update

Historical TSDF

Cubic Structure

Fig. 2: System pipeline. Our motivation is that if users can see the reconstructed mesh all the time through the scanning
process, they can spontaneously collect the missing data based on the differences between the reconstructed mesh and the
real world. Therefore, we use the incremental reconstructed mesh as a visual interaction guide. The two key problems, like
lossless fusion and efficient rendering, are solved by step d and step e.

III. DESIGN

A. Preliminaries

TSDF is a popular 3D representation used in the field of
3D reconstruction [31], [32]. It divides the 3D space into
uniform voxels, and each voxel’s value is the distance to the
nearest surface, which is truncated to −1 or 1 if it exceeds
the distance threshold. Mesh is a classical representation
to describe 3D space, which contains a set of vertices and
triangular faces connected by these vertices. The Marching
Cubes algorithm [33] is a classical way of extracting mesh
from TSDF volume. The specific process is that for each
voxel at (i, j,k) coordinates, a cube is formed with it and
seven other neighbor voxels, placing it in the lower left
corner. Based on eight voxels’ values, An isosurface is
formed with intersecting cube edges, and it is composed of
one or multiple faces. The coordinates of these intersection
points can be calculated with linear interpolation. Executing
like this within each cube will yield the final mesh.

B. Overview

We leverage the rich GPU resources of the edge server
to perform computationally intensive tasks. The monocular
video captured on the mobile side is transferred to the server
for inference via neural networks. The reconstructed mesh is
extracted from the output TSDF volume and then transferred
back to the mobile side for rendering. Fig. 2 illustrates
VIDAR’s workflow. VIDAR takes a sequence of RGB frames
continuously scanned by the user as input (step a) and selects
key frames according to the change of camera poses (step
b). Every N key frames is fed into the scene reconstruction
neural networks to predict the TSDF volume 2 (step c). Our
proposed incremental mesh extraction algorithm manages the
multiple historical TSDF volumes in a slice-style manner and
obtains incremental updates on the basis of generated mesh

2It can be any one of the MVS-based scene reconstruction methods, and
We adopt NeuralRecon, the SOTA method, here.

(step d, discussed in Sec. III-C). Our proposed incremental
mesh rendering algorithm utilizes a fill-in-the-blank policy to
update the mobile GPU’s rendering buffer in an incremental
manner (step e, discussed in Sec. III-D). Finally, users can
see the rendered mesh on the screen (step f).

C. Incremental Mesh Extraction

The important task for the server is to transfer high-quality
mesh as fast as possible. One option is to transfer the whole
mesh. Although the mesh quality is assured, the transmission
time will increase drastically due to massive repeated data.
The 3D mesh compression technique like [34] can not solve
the problem fundamentally. Another option is to transfer the
generated mesh and integrate it with historical meshes on the
mobile side. While it avoids transmission of repeated data, a
fusion fault problem occurs because the generated mesh may
share the same spatial positions with the historical ones. The
direct overlay will cause the rendered mesh to be rugged.

Considering the shortcomings of these two options, the key
is to achieve efficient management and precise integration for
these meshes. We note that although mesh data consists of
unordered vertices and faces, TSDF data can be easily tra-
versed because of the 3D space voxelization, and mesh is also
generated by accessing the voxel values of TSDF volumes
cube by cube. Thus, we can utilize the cubic structure to split
the mesh into slices and locate any face in the mesh based
on the coordinates in the TSDF volume. Benefiting from
the efficient management scheme, we can identify precisely
how the generated mesh has changed relative to the historical
meshed, i.e., which vertices and which faces.

Specifically, for a TSDF volume T ∈ RH∗W∗L, we assign
each cube c ∈ T for two contributes, including the index ci
and the value cv. We use the coordinates of the lower left
corner on the cube to represent it, i.e. ci = (h,w, l), and use
the eight voxel values of the cube to represent cv. Based on
this, we define incremental mesh M as:

M = ⟨Mr,Mc⟩



Normal
Scanning

Fig. 3: Runtime interface with a colored progress bar and
text prompts.

where Mr is the mesh whose vertices and faces are removed,
and Mc is the mesh whose vertices and faces change. For Mr,
we only need to record corresponding cube indices; for Mc,
re-computed vertices and faces both need to be recorded, and
the cude indices are also needed for follow-up convenience.

We assume the generated TSDF volume as Tt and retrieve
Tt−1 from the historical TSDF volume. Tt and Tt−1 share the
same spatial coordinates. The output of the fusion algorithm
is T ′

t , which will be put back on the historical TSDF volume.
Based on the cubic structure, we sequentially traverse these
two TSDF volumes. The cubes at coordinate θ on these
two TSDF volumes are noted as cθ

t−1 and cθ
t . Given that

the generated mesh is built from both previous features and
new data, we believe that it has a better description of the
target scene, so we prefer to trust the new TSDF data when
conducting the incremental data. We use a straightforward
approach to compare these two cubes, i.e., whether faces
exist in this cube. We define the operation function f (θ) for
the cube at coordinate θ as:

f (θ) =


0 (F,F)

cθ
i,t (T,F)

MC(cθ
v,t) (F,T)

I(cθ
v,t−1 ̸= cθ

v,t)∗MC(cθ
v,t) (T,T)

where (F,F) represents that there are no faces in cθ
t−1 and

cθ
t , and others are in a similar fashion. MC(·) represents the

isosurface extraction in the Marching Cubes algorithm. I(·)
is the indicator function. Simply speaking, if there is no face
in cθ

t , record the index and add it to Mr. Otherwise, judge
whether cv,t−1 and cv,t are the same, and if they are different,
compute the mesh for cv,t .

D. Incremental Mesh Rendering

The crucial task for the mobile side is to achieve efficient
and instant rendering for the streamingly received incre-
mental mesh. The rendering process can be simplified to
read mesh data from the rendering buffer, which is usually
constructed as a linear list. Each element on the buffer stores
the coordinates of three vertices in a face. In consideration of
the fact that incremental mesh involves many removal and
modification operations of historical data, a simple idea is
that after new data arrives, the overall mesh is calculated
and then fed into the buffer. It is obvious that the growth of
the overall mesh will bring a huge processing time overhead.

The key point is how to achieve fast buffer updates and
maintain the speed even after multiple operations. We believe

that there is a more efficient way to update directly in the
buffer rather than calculating from scratch each time. Our
basic policy is to utilize the cube indices of Mr and Mc to
locate them in the buffer, remove the corresponding historical
faces for Mr and Mc (setting these positions as zeros), and
append the faces belonging to Mc (add these positions to the
tail). It does speed up the update process but brings much
memory fragmentation after multiple updates due to massive
zero bits, wasting lots of memory resources. We observe
that there is a fixed number of faces when extracting the
isosurface on each cube, which means that many cubes have
the same number of faces. Thus, the optimized policy is to
manage the memory in a fill-in-the-blank style, i.e., fill the
zero bits when a same-sized modified process occurs.

Specifically, we define cube information as cm. It includes
the coordinate of each vertex in all faces v, the count of
faces n, and the offset in the buffer δ , which means that
faces from δ to δ +n in the buffer belong to this cube. We
conduct a dictionary D mapping from ci to cm, which can
help us quickly locate the historical mesh. We also build a
dictionary L to manage the zeroed positions of the buffer.
L[i] records the available offsets whose count of faces is i.

We deal with the incremental mesh in two categories. For
each cube on Mr, we can obtain cm by accessing D[ci]. The
positions of the buffer from δ to δ + n will be zeroed out,
and we add δ to L[n] to make it can be reassigned. For each
cube on Mc, we obtain cm in the same way. If the count of
faces in the new data is equal to n, we can directly modify
v on-site. Otherwise, the operation is similar to Mr. If there
is no usable offset in L, we will place the data at the tail.

E. Optimizations

Tolerance Threshold. We introduce a parameter t called
“tolerance threshold” to balance quality and latency with lim-
ited network bandwidth, which means reducing transferred
data by tolerating the fusion quality decrease. Considering
the shape of faces in a cube is related to eight voxel values,
we observe that the variation of the extracted mesh is slight
and hard to see when the change of these voxel values is
small. If all voxel value variations between cv,t−1 and cv,t are
smaller than t, we thought that the changes are not significant
and it is no need to re-compute the incremental data.

Rendering buffer Backup. We add an alternative buffer
scheme to solve the data synchronization problem, which is
caused by the mismatched speed of rendering and generation
for incremental mesh. Suppose the GPU is using the data in
bA to render at present, and when a new mesh is received, we
update the data in bB. After finishing the update operation,
the GPU render switches to bB. The above process is
performed again each time a new mesh arrives.

Interactive Prompts. Fig. 3 demonstrates our visual-
based interaction scheme. The progress bar on the screen
shows the proportion of frames collected that can perform
an inference process. The user movement monitoring module
reminds users whether the scanning speed is reasonable. The
greater ratio of uploaded key frames and received mesh on
the mobile side means too fast scanning speed. The text



TABLE I: Quantitative results with the “Baseline(part)” system and VIDAR on ScanNet. “Mean Data Compression
Rate” means the ratio of transferred data with the tolerance threshold t to the same data not using the threshold, which is
the average value for all scenes. t helps reduce the incremental data due to being insensitive to the change.

Method t 3D geometry metrics 2D depth metrics Mean Data

Comp ↓ Acc ↓ Recall ↑ Prec ↑ F-score ↑ Abs Rel↓ Abs Diff↓ Sq Rel↓ RMSE↓ δ < 1.25↑ Compression Ratio

baseline - 0.003 0.044 0.946 0.255 0.398 0.085 0.156 0.058 0.263 0.867 -

ours

0.0 0.000 0.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.992 1.000
0.1 0.003 0.002 0.931 0.941 0.936 0.004 0.006 0.001 0.032 0.990 0.587
0.2 0.004 0.004 0.861 0.875 0.868 0.007 0.011 0.002 0.043 0.989 0.512
0.4 0.005 0.005 0.797 0.813 0.805 0.010 0.016 0.002 0.052 0.987 0.473
0.8 0.006 0.006 0.775 0.792 0.783 0.010 0.017 0.002 0.055 0.987 0.467

(a) “Corridor” (b) “Desk” (c) “Office” (d) “Bench”

Fig. 4: Qualitative results on real-world scenes. The first row is about the “Baseline (part)” system, which transfers the
generated mesh and directly fuses it with historical meshes on the mobile side, not utilizing our lossless fusion scheme. Our
results are on the second row.

“Please Slow Down” with the warning-colored bar reminds
users to slow down the scanning speed. The greater time
interval between the last and current key frames means too
slow scanning speed, and the text “Move Your Device” will
prompt them to collect more views.

IV. EXPERIMENTS

A. Datasets and Metrics

We use the official test sequences of the ScanNet [14]
dataset for the quantitative evaluation. Besides, we capture
some real-world scenes to qualitatively demonstrate the per-
formance of VIDAR. We use the 2D depth metrics defined in
[35] and 3D geometry metrics defined in [20], which are used
by most scene reconstruction methods. We use the original
output 3D mesh of the chosen scene reconstruction method
as ground truth to evaluate whether the 3D mesh rendered
on the mobile side is consistent with the original mesh.

B. Quality Evaluation

We implemented the “Baseline(part)” system as a base-
line to evaluate the guidance quality of VIDAR. It applies
the conventional Marching Cubes algorithm to extract the
generated mesh and then overlays it with the previous mesh
data on the screen without using our mesh fusion scheme.

Fig. 4 shows rendered mesh with the “Baseline(part)”
system and VIDAR in multiple real-world scenes. The
“Baseline(part)” system has obvious grooves at the edges of
the rendered mesh, while VIDAR renders a smoothing mesh.

0 2 4 6 8 10 12 14 16 18 20 22 24 26
50

100

150

200

250

300

350

P
ro

ce
ss

in
g

 T
im

e 
(m

s)

Fragment

 baseline

 ours

Fig. 5: Comparison of processing time between the “Base-
line(whole)” system and VIDAR for every fragment. The
input frames are divided into fragments and sequentially fed
into the system.

In order to better illustrate the performance of VIDAR, we
test our fusion scheme on the ScanNet dataset. Table I shows
the comparison results. When t is 0.0, the mesh extracted by
VIDAR is consistent with the GT mesh. VIDAR outperforms
the “Baseline(part)” system in all metrics even when t is
taken to 0.8. The “Baseline(part)” system significantly dam-
ages the F-score, which is a more comprehensive indicator
of mesh quality. Besides, we find that when the value of t is
0.1, the transferred data volume can be reduced to 58.7% of
the original data with 6% quality loss (from F-score). Setting
a suitable value for t can help balance the quality and latency
under limited network bandwidth.



0 50 100 150 200 250
0

50

100

150

200

250

300

B
u

ff
er

 U
p

d
a

te
 T

im
e 

(m
s)

Fragment

 plain

 ours

Fig. 6: Comparison of buffer update time between “plain”
algorithm and ours for every fragment.

(a) Target Scene (b) p1 (offline) (c) p2 (offline)

(d) expert (VIDAR) (e) p1 (VIDAR) (f) p2 (VIDAR)

Fig. 7: Qualitative performance when users scan with
offline-scanning system and VIDAR.

C. Efficiency Evaluation

To demonstrate the data transfer efficiency of VIDAR, we
implemented the “Baseline(whole)” system as a baseline.
It integrates the generated TSDF into the historical TSDF
volume and extracts the global mesh with the Marching
Cubes algorithm, then directly transfers and renders it on the
mobile side, without using our incremental transfer scheme.

We tested the “Baseline(whole)” system and ours in a
real-world scene to compare the processing time of each
fragment. From Fig. 5, we can see that the processing speed
of the “Baseline(whole)” system is getting slower and slower,
even in the 11th fragment there was a system crash, and the
scanning task eventually could not be completed. However,
the speed of VIDAR was stable at 100-150ms and completed
data collection normally.

To prove the data rendering effectiveness of VIDAR, we
implemented the “plain” buffer update algorithm, which con-
structs the buffer from scratch each time a new mesh arrives.
Comparative experiments between these two algorithms are
conducted on a real-world scene. Fig. 6 shows that the time
overhead of the ”plain” algorithm shows an upward trend
and grows to over 200 ms. However, our update algorithm
remains stable within 100 ms (50 ms on average). The overall
latency of our update algorithm remains smooth and low over
time, which ensures VIDAR renders mesh in time.

Runtime. We tested VIDAR in a number of real-world
scenes of varying size and type. Every 9 collected key
frames by the smartphone are transferred to the server and

then fed into the reconstruction neural networks to generate
the incremental mesh. The statistics show that VIDAR can
acquire 3.6 key frames each second. The mobile mesh
updating time is the time taken from when it starts sending
the key frames to when it receives the new incremental mesh,
which is about 943ms (1hz). The mobile mesh rendering
time is the time to update the rendering buffer, which is
about 47ms (20hz). Therefore, VIDAR is able to meet the
requirement of instantly displaying the mesh as one scans
the scene. VIDAR’s average upstream and downstream bit
rates are 7.88 and 4.21 Mbps, respectively, which keep the
network bandwidth overhead in an acceptable range.

D. Case Study

We invite an expert and two volunteers p1 and p2 to
reconstruct a real-world scene separately, which demon-
strates data collection quality intuitively. The expert has rich
experience in 3D scene data collection, and these volunteers
are not from the computer science field. The volunteers first
reconstruct the scene through the offline scanning process
and then reconstruct the same scene using VIDAR. The mesh
reconstructed by the expert using VIDAR served as a com-
parison. For the fairness of the experiment, the key frames
selection policy and the reconstruction neural networks used
in the traditional method are consistent with what we used in
VIDAR. Fig. 7 shows that the offline-scanning reconstruction
results of both volunteers are incomplete or even broken. In
contrast, the interactive reconstruction results are complete
and seem similar to the mesh built by the expert. The
results show that with VIDAR, even users without a technical
background can reconstruct 3D scene mesh with higher
quality more efficiently.

V. CONCLUSIONS

In conclusion, we propose VIDAR to address the data
missing problem in situ during users’ scanning process
for monocular 3D reconstruction. VIDAR guides users to
supplement more scene information with the streaming-
generated mesh overlayed on real-world images. Our in-
cremental mesh extraction algorithm enables lossless fusion
between multiple historical mesh data and current generated
mesh for high-quality guidance. Our incremental mesh ren-
dering algorithm achieves instant buffer updates and efficient
memory management for instant feedback. The introduction
of optimizations ensures system performance and user expe-
rience under low bandwidth conditions. We believe VIDAR
can improve the reconstruction quality of existing scene
reconstruction algorithms in terms of data dimensions.

VI. ACKNOWLEDGEMENTS

This work was supported in part by the National Key
R&D Program of China under Grants 2022YFF0604503, in
part by NSFC under Grants 62272224, 62341201, 62302207
and 62272215, in part by the Leading Edge Technology
Program of Jiangsu Natural Science Foundation under Grant
BK20202001, and in part by the Science Foundation for
Youths of Jiangsu Province under Grant BK20220772.



REFERENCES

[1] L. F. de Souza Cardoso, F. C. M. Q. Mariano, and E. R. Zorzal,
“A survey of industrial augmented reality,” Computers & Industrial
Engineering, vol. 139, p. 106159, 2020.

[2] E. Dincelli and A. Yayla, “Immersive virtual reality in the age of
the metaverse: A hybrid-narrative review based on the technology
affordance perspective,” The Journal of Strategic Information Systems,
vol. 31, no. 2, p. 101717, 2022.

[3] M. Speicher, B. D. Hall, and M. Nebeling, “What is mixed reality?”
in Proceedings of the 2019 CHI conference on human factors in
computing systems, 2019, pp. 1–15.

[4] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monoc-
ular visual-inertial state estimator,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 1004–1020, 2018.

[5] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. Montiel, and
J. D. Tardós, “Orb-slam3: An accurate open-source library for visual,
visual–inertial, and multimap slam,” IEEE Transactions on Robotics,
vol. 37, no. 6, pp. 1874–1890, 2021.

[6] Apple, “Arkit,” https://developer.apple.com/augmented-reality/, 2017.
[7] Google, “Arcore,” https://developers.google.com/ar, 2018.
[8] J. Sun, Y. Xie, L. Chen, X. Zhou, and H. Bao, “Neuralrecon: Real-

time coherent 3d reconstruction from monocular video,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
2021, pp. 15 598–15 607.

[9] A. Duzceker, S. Galliani, C. Vogel, P. Speciale, M. Dusmanu, and
M. Pollefeys, “Deepvideomvs: Multi-view stereo on video with recur-
rent spatio-temporal fusion,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2021, pp. 15 324–15 333.

[10] M. Sayed, J. Gibson, J. Watson, V. Prisacariu, M. Firman, and
C. Godard, “Simplerecon: 3d reconstruction without 3d convolutions,”
in European Conference on Computer Vision (ECCV), 2022, pp. 1–19.

[11] J. Liu, J. Ren, Y. Zhang, X. Peng, Y. Zhang, and Y. Yang, “Efficient
dependent task offloading for multiple applications in mec-cloud
system,” IEEE Transactions on Mobile Computing, vol. 22, no. 4,
pp. 2147–2162, 2021.

[12] X. Pang, Z. Wang, J. Li, R. Zhou, J. Ren, and Z. Li, “Towards online
privacy-preserving computation offloading in mobile edge computing,”
in IEEE INFOCOM 2022-IEEE Conference on Computer Communi-
cations. IEEE, 2022, pp. 1179–1188.

[13] S. Yue, J. Ren, N. Qiao, Y. Zhang, H. Jiang, Y. Zhang, and Y. Yang,
“Todg: Distributed task offloading with delay guarantees for edge
computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 33, no. 7, pp. 1650–1665, 2021.

[14] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and
M. Nießner, “Scannet: Richly-annotated 3d reconstructions of indoor
scenes,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 5828–5839.

[15] Y. Yao, Z. Luo, S. Li, T. Fang, and L. Quan, “Mvsnet: Depth
inference for unstructured multi-view stereo,” in European Conference
on Computer Vision (ECCV), 2018, pp. 767–783.

[16] R. T. Collins, “A space-sweep approach to true multi-image matching,”
in IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 1996, pp. 358–363.

[17] S. Im, H.-G. Jeon, S. Lin, and I. S. Kweon, “Dpsnet: End-to-end deep
plane sweep stereo,” arXiv preprint arXiv:1905.00538, 2019.

[18] K. Wang and S. Shen, “Mvdepthnet: Real-time multiview depth
estimation neural network,” in International Conference on 3D vision
(3DV), 2018, pp. 248–257.

[19] Y. Hou, J. Kannala, and A. Solin, “Multi-view stereo by temporal non-
parametric fusion,” in International Conference on Computer Vision
(ICCV), 2019, pp. 2651–2660.

[20] Z. Murez, T. Van As, J. Bartolozzi, A. Sinha, V. Badrinarayanan, and
A. Rabinovich, “Atlas: End-to-end 3d scene reconstruction from posed
images,” in European Conference on Computer Vision (ECCV), 2020,
pp. 414–431.

[21] A. Bozic, P. Palafox, J. Thies, A. Dai, and M. Nießner, “Trans-
formerfusion: Monocular rgb scene reconstruction using transformers,”
Conference on Neural Information Processing Systems (NeurIPS),
vol. 34, pp. 1403–1414, 2021.

[22] N. Stier, A. Rich, P. Sen, and T. Höllerer, “Vortx: Volumetric 3d
reconstruction with transformers for voxelwise view selection and
fusion,” in International Conference on 3D Vision (3DV), 2021, pp.
320–330.

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Conference on Neural Information Processing Systems (NeurIPS),
vol. 30, 2017.

[24] A. Rich, N. Stier, P. Sen, and T. Höllerer, “3dvnet: Multi-view depth
prediction and volumetric refinement,” in International Conference on
3D Vision (3DV), 2021, pp. 700–709.

[25] T. Schöps, T. Sattler, C. Häne, and M. Pollefeys, “3d modeling on
the go: Interactive 3d reconstruction of large-scale scenes on mobile
devices,” in International Conference on 3D Vision (3DV), 2015, pp.
291–299.

[26] M. Klingensmith, I. Dryanovski, S. S. Srinivasa, and J. Xiao, “Chisel:
Real time large scale 3d reconstruction onboard a mobile device
using spatially hashed signed distance fields.” in Robotics: science
and systems, vol. 4, no. 1, 2015.

[27] P. Tanskanen, K. Kolev, L. Meier, F. Camposeco, O. Saurer, and
M. Pollefeys, “Live metric 3d reconstruction on mobile phones,” in
International Conference on Computer Vision (ICCV), 2013, pp. 65–
72.

[28] K. Kolev, P. Tanskanen, P. Speciale, and M. Pollefeys, “Turning mobile
phones into 3d scanners,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2014, pp. 3946–3953.

[29] P. Ondrúška, P. Kohli, and S. Izadi, “Mobilefusion: Real-time volu-
metric surface reconstruction and dense tracking on mobile phones,”
IEEE Transactions on Visualization and Computer Graphics (TVCG),
vol. 21, no. 11, pp. 1251–1258, 2015.

[30] X. Yang, L. Zhou, H. Jiang, Z. Tang, Y. Wang, H. Bao, and G. Zhang,
“Mobile3drecon: real-time monocular 3d reconstruction on a mobile
phone,” IEEE Transactions on Visualization and Computer Graphics
(TVCG), vol. 26, no. 12, pp. 3446–3456, 2020.

[31] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in
IEEE International Symposium on Mixed and Augmented Reality
(ISMAR), 2011, pp. 127–136.

[32] A. Dai, M. Nießner, M. Zollhöfer, S. Izadi, and C. Theobalt, “Bundle-
fusion: Real-time globally consistent 3d reconstruction using on-
the-fly surface reintegration,” ACM Transactions on Graphics (ToG),
vol. 36, no. 4, pp. 24:1–24:18, 2017.

[33] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution
3d surface construction algorithm,” ACM Special Interest Group on
Computer Graphics (SIGGRAPH), vol. 21, no. 4, pp. 163–169, 1987.

[34] Google, “Draco 3d data compression,” https://google.github.io/draco/,
2017.

[35] D. Eigen, C. Puhrsch, and R. Fergus, “Depth map prediction from a
single image using a multi-scale deep network,” Conference on Neural
Information Processing Systems (NeurIPS), vol. 27, 2014.

https://developer.apple.com/augmented-reality/
https://developers.google.com/ar
https://google.github.io/draco/

	INTRODUCTION
	Related Works
	MVS-based Scene Reconstruction
	Mobile Scene Reconstruction

	Design
	Preliminaries
	Overview
	Incremental Mesh Extraction
	Incremental Mesh Rendering
	Optimizations

	Experiments
	Datasets and Metrics
	Quality Evaluation
	Efficiency Evaluation
	Case Study

	CONCLUSIONS
	Acknowledgements
	References

