
MuSR: MULTI-SCALE 3D SCENES RECONSTRUCTION BASED ON MONOCULAR VIDEO

Han Gao, Hao Wu, Peiwen Dong, Yixin Xu, Fengyuan Xu*, and Sheng Zhong

National Key Lab for Novel Software Technology, Nanjing University

ABSTRACT

Three-dimensional (3D) scene reconstruction, particularly
from monocular videos, is a significant challenge in large-
scale scenarios due to difficulty handling varying object sizes
and high computational resource needs. This paper introduces
MuSR, a novel multi-scale reconstruction method address-
ing these issues. MuSR features a dynamic multi-resolution
spatial structure that adaptively adjusts voxel resolution for
objects of different sizes to improve reconstruction quality.
MuSR also employs a block-based sparse 3D data structure
and hardware resource management strategy to reduce GPU
memory usage while maintaining efficient reconstruction.
Evaluated on ScanNet and 7-Scenes datasets, as well as real-
world scenes, MuSR outperforms state-of-the-art methods in
terms of efficiency, completeness, and geometric shape re-
construction, proving its applicability in practical multi-scale
3D reconstructions.

Index Terms— Monocular Video-based 3D Reconstruc-
tion, Multi-Scale Scene Reconstruction, Multi-Resolution
Spatial Structure

1. INTRODUCTION

Plentiful 3D Reconstruction methods have been proposed to
build the 3D representation of real-world space based on the
monocular posed video [1, 2, 3, 4, 5, 6]. However, these meth-
ods fall short in quality and efficiency when applied to multi-
scale scenes.

The quality deficiency comes from the varying sizes of
objects within multi-scale scenes. In 3D scene reconstruc-
tion, real-world spaces are abstracted into multiple voxels.
For the same scene, the smaller the size of the voxels, the
higher the quality of the reconstructed 3D model. Existing
deep learning-based methods can only produce one fixed-size
voxel when reconstructing the scene [2, 4, 5, 6]. However,
single-size voxels struggle to balance the scope and quality of
reconstruction. For example, a scale suitable for reconstruct-
ing larger objects may be too large to capture smaller details.

The efficiency deficiency comes from the fact that exist-
ing methods are GPU memory-intensive. They store 3D space
data as a Truncated Signed Distance Function (TSDF) [7].
The GPU memory usage increases proportionately with the

*Corresponding author: fengyuan.xu@nju.edu.cn

scene’s size to reconstruct. Existing methods [8, 9] set differ-
ent voxel sizes for different parts of space to reduce the total
number of voxels, thus reducing the GPU memory. They can
only alleviate the problem of a large GPU storage footprint.
When faced with large space, e.g., the entire floor, the re-
quired memory resources can still surpass GPU limitations,
leading to unsuccessful reconstructions.

To address these deficiencies, we propose MuSR — a
novel multi-scale scene reconstruction method designed to
adaptively adjust the voxel size of different scene parts. For
the quality issue, we reconstruct the scene after dividing it
dynamically by scale and then perform weighted fusion. For
the efficiency issue, MuSR introduces a block-based sparse
3D data structure combined with a hardware resource man-
agement strategy to reduce GPU memory usage. We evaluate
our MuSR using ScanNet [10], 7-Scenes [11] datasets, and
real-world scenes. Our findings indicate that MuSR is effi-
cient—requiring less than 1GB of GPU memory while main-
taining swift reconstruction speeds—and adept at delivering
superior reconstruction detail and overall scene completeness
in multi-scale scenes. Moreover, our system’s reconstruction
efficiency surpassed that of leading algorithms in extensive
scenes, demonstrating superior completeness and enhanced
geometric shape reconstruction of objects. For more experi-
ment results on reconstruction quality and efficiency, please
visit our anonymous website 1.

The contributions of our work are threefold:

• We propose a novel multi-scale scene reconstruction
method, MuSR, which skillfully addresses the quality
and efficiency issues inherent in existing monocular
video-based 3D reconstruction methods.

• We dynamically reconstruct the scene by scale in
blocks and propose a sparse 3D data structure cou-
pled with a corresponding GPU memory management
policy for reconstruction quality and efficiency.

• We comprehensively evaluate our system using Scan-
Net, 7-Scenes datasets, and real-world scenes. The
evaluation results demonstrate that MuSR outperforms
SOTA efforts regarding efficiency, completeness, and
geometric shape.

1https://anoymousauthors.github.io/MuSR.github.
io

https://anoymousauthors.github.io/MuSR.github.io
https://anoymousauthors.github.io/MuSR.github.io

Main Memory-based caching
Multi-scale TSDF Fusion

I

I

GPUMulti-scale TSDF Generation

④

④

④

①

①

③

③

③

③

①

②

②

②

N Neural Network
ConcatenateC
Early ExitE Weighted Sum

UpsampleU
InterpolationI

Data
Block
FilterF Data after Fusion

Memory Input Bus
Memory Output Bus

𝑺𝑺𝒕𝒕
𝒍𝒍,𝟏𝟏

𝑺𝑺𝒕𝒕
𝒍𝒍,𝟐𝟐

2D
Features

N

FEU

𝑺𝑺𝒕𝒕
𝒍𝒍,𝒏𝒏

NC

N

FEU

C

3D Features

①

𝑺𝑺𝒕𝒕−𝟏𝟏
𝒈𝒈,𝟏𝟏

𝑺𝑺𝒕𝒕
𝒈𝒈,𝟏𝟏

𝑺𝑺𝒈𝒈,𝟏𝟏

𝑺𝑺𝒈𝒈,𝟐𝟐

𝑺𝑺𝒈𝒈,𝟑𝟑

𝑺𝑺𝒈𝒈

②

Fig. 1: MuSR architecture

2. MuSR DESIGN

2.1. System Overview

Fig. 1 illustrates MuSR’s architecture. MuSR inputs a posed
monocular video and outputs the scene mesh generated based
on TSDF data. The current frame is recorded as a new key
frame when the change of camera pose exceeds a certain
threshold compared with the previous key frame, and every
N key frame forms a fragment for the following 2D im-
age feature extraction process. Our MuSR’s design shares
a similar idea with NeuralRecon[2], the SOTA 3D scene
reconstruction methods, regarding applying coarse-to-fine
network to obtain 3D spatial features and fusing new back-
projected local features with global features. However, due to
the limitation of NeuralRecon in reconstruction quality and
efficiency, we make the following two key designs to enable
3D scene reconstruction in a multi-scale scene.

The first is the multi-scale TSDF generation and fusion
design for reconstruction quality. For each resolution layer,
we customize the voxel size and reconstruction scope of 3D
feature space and predict local TSDF for the current fragment.
Sl,n
t represents a local TSDF volume at time t, whose reso-

lution level is l. We also designed an early-exit scheme to
decide which resolution is enough based on a valid number
of voxels. Currently, the local TSDF should be updated to
the global TSDF. Sg,n represents a global TSDF volume with
resolution n. To achieve multi-scale TSDF seamless integra-
tion, we design a block-based TSDF split strategy to generate
mesh data in a divide-and-conquer manner. Specifically, For
blocks located in the boundary of TSDF data with different
resolutions, we design a weighted TSDF fusion algorithm for
smoother transitions according to the situation of data change.

The second is a memory-assisted caching mechanism for
reconstruction efficiency. The increasing global features and
TSDF data cause the reconstruction crash problem because
of insufficient GPU memory. Our core idea is to replace the
cold data not needed in the current reconstruction step into
the main memory for use by the GPU on demand when fus-
ing current features with global features and updating current
local TSDF data to global TSDF data. We design a two-level
block structure and management policy to manage cold data.

2.2. Scale-aware Reconstruction

Multi-scale TSDF Generation According to the observation,
low-resolution representations can describe larger spaces but
lack local details. In contrast, high-resolution representations
are better at demonstrating details in small spaces; we set
larger spatial sizes and coarse-grain voxels for low-resolution
layers and smaller spatial sizes and fine-grain voxels for high-
resolution layers by setting the maximum depth of the view-
ing frustum (i.e., the distance from the far clipping plane to
the camera) for each level. We set a large viewing frustum
depth for low-resolution space to coarsely reconstruct dis-
tant objects and a small viewing frustum depth for the high-
resolution space to reconstruct near objects finely.

If the number of voxels upsampled to the higher resolu-
tion space is small, the following reconstruction process can
be skipped to save system overhead. We design a filter and
early-exit scheme to help determine the resolution of the cur-
rent fragment. Some voxels in the low-resolution space will
be filtered because of the smaller reconstruction scope of the
high-resolution space. We define the ratio of the number of
voxels entering the next resolution layer to the number before
filtering to check the valid range. The inference process will
terminate early in the current resolution layer if it does not
exceed the threshold.

Multi-scale TSDF Fusion. Since Marching Cubes (MC)
algorithm [12] can not process multiple-resolution TSDF,
we solve this problem in a divide-and-conquer manner. We
divide TSDF data at different resolutions into blocks and
choose the highest-resolution TSDF in the block. For non-
boundary blocks, meshes can be directly generated through
the MC algorithm. However, some voxels within the bound-
ary block have a lower resolution TSDF than neighbor voxels.
We design a weighted fusion algorithm for smoother high-
resolution TSDF and low-resolution TSDF transitions. We
calculate the local variance of TSDF changes in three axes di-
rections within a 5×5×5 local scope and use the square mean
method to calculate the composite variance, which is used as
a weight to indicate the preference between two resolutions.
When the variance is less than t1, low-resolution TSDF is
directly used for smooth reconstruction results. When greater
than t2, high-resolution TSDF is chosen to restore geomet-
ric shapes. The weights between these two thresholds are
linearly varied to ensure a smoother transition.

(a) NeuralRecon (b) MuSR

Fig. 2: Qualitative results for quality of local object details in
real-world scenes.

2.3. Main Memory-based Caching

We observe that the global intermediate features and TSDF
data produced by neural networks (in Fig. 1) continuously
increase, occupying a large amount of GPU memory. Fail-
ure to manage the continuously-increasing data will cause the
reconstruction to crash. Our core idea is to split the global
intermediate features and TSDF data into two parts, i.e., the
cold data and the hot data, according to the requirement of the
current reconstruction step. We can put the cold data into the
main memory, which is usually sufficient on the server, for
the subsequent GPU on-demand access.

Data Structure. The computational overhead of travers-
ing the complete global data will seriously affect the system’s
running speed when acquiring and updating global data. We
design a two-level block sparse structure to organize global
intermediate features and TSDF data, which means maintain-
ing block indices in GPU memory to find the involved blocks
quickly and specific block values in the main memory.

Management Policy. As Fig. 1 shows, the reconstruction
scope (denoted as 1⃝) is determined by the local 3D features
of current fragment. Then, we can obtain indices of related
blocks and transfer the values of these blocks (denoted as 2⃝)
from main memory to GPU memory. Based on the current
fragment’s local and global features, new features (denoted
as 3⃝) can be computed by neural networks and transferred
from GPU memory back to main memory to update global
data. Some new blocks may be created during this process,
so we need to record indices of related blocks to update block
indices. All updated TSDF data (denoted as 4⃝) will be trans-
ferred back to the main memory for the following TSDF fu-
sion process.

(a) NeuralRecon (b) MuSR

Fig. 3: Qualitative results for quality of global completeness
in real-world scenes.

3. EVALUATION

Implementation: For each layer, the voxel sizes are 16cm,
8cm, 4cm, 2cm, and 1cm; the maximum depths of the view
frustum are 6m, 6m, 3m, 0.8m, and 0.8m. Except for the
reconstruction scope in the 16 cm layer being 483, the rest
are all 963. The early exit threshold is 0.25. The weighted fu-
sion algorithm’s block size is 0.43 cubic meters. It uses 8cm,
4cm, and 1cm for final fusion. t1 and t2 are 0.01 and 0.04.
We perform network fine-tuning based on the pre-trained
weights provided by NeuralRecon, and we freeze the weights
of lower-resolution layers during the training at each layer.

Datasets: We conducted experiments on two indoor
datasets, ScanNet and 7-Scenes, and supplemented with
Replica dataset[13]. We used Pangolin to render RGB images
and depth maps from the Replica dataset. We simulated the
user’s scanning method during rendering, generating camera
trajectories. We added small random perturbations to the
camera extrinsic each time to simulate real situations.

Metrics: The 3D geometry metrics are defined in [1] and
2D depth metrics are defined in [14].

3.1. Reconstruction Quality

Local Details: Table 1 reports the reconstruction quality on
ScanNet and 7-Scenes datasets. On ScanNet, MuSR outper-
forms NeuralRecon in all metrics. On 7-Scenes, MuSR lags
slightly behind NeuralRecon regarding RMSE but surpasses it
in all other metrics. Experimental results show that our MuSR
outperforms NeuralRecon, the SOTA monocular reconstruc-
tion method, regarding reconstruction quality. We report the
reconstruction results in real-world scenes in Fig. 2 to show
the reconstruction quality more intuitively.

Table 1: Results for quality of local details.

Dataset System
2D depth 3D geometric

Abs Rel↓ Abs Diff↓ Sq Rel↓ RMSE↓ RMSE log↓ δ < 1.25↑ Acc↓ Prec↑ F-score↑

ScanNet
NeuralRecon 0.113 0.081 0.033 0.126 0.148 0.885 0.041 0.772 0.720

MuSR 0.084 0.060 0.023 0.102 0.120 0.928 0.035 0.816 0.780

7-Scenes
NeuralRecon 0.216 0.171 0.085 0.223 0.228 0.719 0.177 0.372 0.450

MuSR 0.190 0.154 0.081 0.227 0.221 0.757 0.128 0.400 0.500

Table 2: Results for quality of global completeness.

Dataset System
2D depth 3D geometric

2D Comp↑ 3D Comp↓ Recall↑

ScanNet
NeuralRecon 0.902 0.627 0.678

MuSR 0.967 0.380 0.750

7-Scenes
NeuralRecon 0.822 0.354 0.555

MuSR 0.936 0.236 0.678

(a) NeuralRecon (b) MuSR

Fig. 4: Results for reconstruction efficiency.

Global Completeness: Table 2 reports the results of
reconstruction completeness on ScanNet and the 7-Scenes
datasets. In both datasets, MuSR surpasses the NeuralRecon
in all metrics, showing that our system has a better overall
completeness. We show some reconstruction results in real-
world scenes in Fig. 3. Our method outperforms the baseline
and has high overall completeness.

3.2. System efficiency

Memory analysis. We count the GPU memory by the amount
of memory requested by Pytorch’s memory allocator from the
GPU during the reconstruction process. An out-of-memory
error occurs when Pytorch’s memory request pushes the total
GPU memory usage over its limit. Fig. 5 reports the GPU
memory usage under a large real-world scene reconstruction
process. The GPU memory usage of NeuralRecon continu-
ously increases until an out-of-memory error occurs (marked
as ×), failing to complete the reconstruction (Fig. 4a). How-
ever, MuSR’s GPU memory usage is constant, less than 1GB,
enabling efficient reconstruction (Fig. 4b).

Performance Analysis: Fig. 6 reports the time used
throughout the entire reconstruction process. NeuralRecon
takes less time to reconstruct each fragment in the initial
phase (before the dashed line in Figure 6). After this line,
MuSR performs faster. Because global data is organized us-
ing a sparse array in NeuralRecon, selecting local data and
updating global data both require complete traversal, which
becomes increasingly computationally expensive as the scale
of the scene grows. Our design ensures that the amount of

NeuralRecon
MuSR

Number of Fragments

G
PU

 m
em

or
y

(G
B

)

Fig. 5: GPU memory statistics.

Number of Fragments
Ti

m
e

co
st

 (s
)

NeuralRecon

MuSR

Fig. 6: Time statistics.
data processed in each fragment reconstruction is capped by a
certain number of blocks, regardless of the scene size. Thus,
MuSR takes less time to reconstruct each fragment in larger-
scale scenes, showcasing efficiency in system performances.

4. CONCLUSION

In conclusion, we proposed a multi-scale scene reconstruction
method, MuSR, to address the challenges of large-scale 3D
reconstruction from monocular videos. Our dynamic range
multi-resolution spatial structure enables adaptive granularity
adjustments for objects of varying sizes in real-world scenes.
Additionally, our approach leverages a novel block-based
sparse 3D data structure and hardware resource management
strategy to reduce GPU memory usage. MuSR demonstrated
superior reconstruction detail, overall scene completeness,
and efficiency in memory usage and speed. Impressively,
it surpassed state-of-the-art algorithms in terms of recon-
struction quality and efficiency, offering marked potential for
practical applications in large-scale 3D scene reconstructions.

5. ACKNOWLEDGEMENTS

This work was supported in part by NSFC under Grants
62341201, 62272224, 62302207, and 62272215, in part by
the Leading Edge Technology Program of Jiangsu Natural
Science Foundation under Grant BK20202001, and in part by
the Science Foundation for Youths of Jiangsu Province under
Grant BK20220772.

6. REFERENCES

[1] Zak Murez, Tarrence Van As, James Bartolozzi, Ayan Sinha,
Vijay Badrinarayanan, and Andrew Rabinovich, “Atlas: End-
to-end 3d scene reconstruction from posed images,” in Com-
puter Vision–ECCV 2020: 16th European Conference, Glas-
gow, UK, August 23–28, 2020, Proceedings, Part VII 16.
Springer, 2020, pp. 414–431.

[2] Jiaming Sun, Yiming Xie, Linghao Chen, Xiaowei Zhou,
and Hujun Bao, “Neuralrecon: Real-time coherent 3d re-
construction from monocular video,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2021, pp. 15598–15607.

[3] Noah Stier, Alexander Rich, Pradeep Sen, and Tobias Höllerer,
“Vortx: Volumetric 3d reconstruction with transformers for
voxelwise view selection and fusion,” in 2021 International
Conference on 3D Vision (3DV). IEEE, 2021, pp. 320–330.

[4] Aljaz Bozic, Pablo Palafox, Justus Thies, Angela Dai, and
Matthias Nießner, “Transformerfusion: Monocular rgb scene
reconstruction using transformers,” Advances in Neural Infor-
mation Processing Systems, vol. 34, pp. 1403–1414, 2021.

[5] Chenyangguang Zhang, Zhiqiang Lou, Yan Di, Federico
Tombari, and Xiangyang Ji, “SST: Real-time end-to-end
monocular 3d reconstruction via sparse spatial-temporal guid-
ance,” arXiv preprint arXiv:2212.06524, 2022.

[6] Zi-Xin Zou, Shi-Sheng Huang, Yan-Pei Cao, Tai-Jiang Mu,
Ying Shan, and Hongbo Fu, “Mononeuralfusion: Online
monocular neural 3d reconstruction with geometric priors,”
arXiv preprint arXiv:2209.15153, 2022.

[7] Brian Curless and Marc Levoy, “A volumetric method for
building complex models from range images,” in Proceedings
of the 23rd annual conference on Computer graphics and in-
teractive techniques, 1996, pp. 303–312.

[8] Emanuele Vespa, Nils Funk, Paul HJ Kelly, and Stefan
Leutenegger, “Adaptive-resolution octree-based volumetric
slam,” in 2019 International Conference on 3D Vision (3DV).
IEEE, 2019, pp. 654–662.

[9] Lukas Schmid, Jeffrey Delmerico, Johannes L Schönberger,
Juan Nieto, Marc Pollefeys, Roland Siegwart, and Cesar Ca-
dena, “Panoptic multi-tsdfs: a flexible representation for on-
line multi-resolution volumetric mapping and long-term dy-
namic scene consistency,” in 2022 International Conference
on Robotics and Automation (ICRA). IEEE, 2022, pp. 8018–
8024.

[10] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber,
Thomas Funkhouser, and Matthias Nießner, “Scannet: Richly-
annotated 3d reconstructions of indoor scenes,” in Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, 2017, pp. 5828–5839.

[11] Jamie Shotton, Ben Glocker, Christopher Zach, Shahram Izadi,
Antonio Criminisi, and Andrew Fitzgibbon, “Scene coordinate
regression forests for camera relocalization in rgb-d images,”
in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2013, pp. 2930–2937.

[12] William E Lorensen and Harvey E Cline, “Marching cubes:
A high resolution 3d surface construction algorithm,” ACM
siggraph computer graphics, vol. 21, no. 4, pp. 163–169, 1987.

[13] Julian Straub et al., “The replica dataset: A digital replica of
indoor spaces,” arXiv preprint arXiv:1906.05797, 2019.

[14] David Eigen, Christian Puhrsch, and Rob Fergus, “Depth map
prediction from a single image using a multi-scale deep net-
work,” Advances in neural information processing systems,
vol. 27, 2014.

	 Introduction
	 MuSR Design
	 System Overview
	 Scale-aware Reconstruction
	 Main Memory-based Caching

	 Evaluation
	 Reconstruction Quality
	 System efficiency

	 Conclusion
	 Acknowledgements
	 References

