
GAPter: GRAY-BOX DATA PROTECTOR FOR DEEP LEARNING INFERENCE SERVICES
AT USER SIDE

Hao Wu, Bo Yang, Xiaopeng Ke, Siyi He, Fengyuan Xu*, and Sheng Zhong

State Key Laboratory for Novel Software Technology, Nanjing University

ABSTRACT
The widespread deployment of Deep Learning Inference Ser-
vices (DLISes) has raised people’s concerns about their data
privacy being breached. Although data privacy enhancement
has recently attracted a lot of attention, existing solutions all
require the cooperation of service providers. Users lose con-
trol of their data when making data privacy enhancement de-
cisions. However, it is difficult to enable the user-side control
of data abuse prevention because users do not have any pro-
gramming skills, deep learning knowledge, or rich computing
resources. In this work, we propose a fully-automatic user-
side data privacy enhancement solution, GAPter, for DLISes.
Given such a DLIS, GAPter can adaptively fuzz the service
for a suitable enhancement strategy, with no cooperation be-
tween the DLIS provider and the user. We have implemented
and comprehensively evaluated GAPter. The experimental re-
sults show that GAPter can find good balance points between
privacy enhancement and user data utility.

Index Terms— Data Privacy, Data Security, Deep Learn-
ing Privacy

1. INTRODUCTION

Deep Learning Inference Service (DLIS) [1, 2] lately gains a
lot of popularity. It delivers the power of artificial intelligence
(AI) to resource-limited devices by offloading expensive com-
putations to the cloud. Leading web service providers, such
as Microsoft, Google, Amazon, and Face++, have achieved
great business successes with the DLISes launched for their
customers.

While enjoying huge benefits of DLIS, people are also
deeply concerned about the potential privacy compromise.
DLISes, by nature, collect a lot of input data containing much
unnecessary information regarding their functions. For ex-
ample, a DLIS for recognizing vehicle types usually captures
visual profiles of nearby pedestrians. These high-resolution
profile images, without any authorization, could be freely ex-
ploited to infer sensitive information about captured people or
train new face recognition models.

The severe data privacy compromise has caught a lot of
attention. Laws and regulations have been put in place world-

*Corresponding author: fengyuan.xu@nju.edu.cn

Fig. 1: GAPter can enhance user privacy with almost no im-
pact on DLIS’s accuracy.

wide to protect user data fed to the deep learning (DL) mod-
els, such as European GDPR [3] and California’s CCPA [4].
New technologies are invented to facilitate the installation of
these laws and regulations. They [5, 6, 7, 2, 8] effectively
alleviate the potential privacy issues in the data collection,
processing, and pre-transmission stage respectively. Unfor-
tunately, the success of these solutions requires honest coop-
eration from DLIS providers, which might not be available
in many real-world scenarios like a malicious DLIS provider.
Additionally, adopting these solutions requires the deep ex-
pertise of DL and a huge amount of computing resources,
making large-scale deployment costs quite high.

However, it is challenging to bring the control power of
user data back to them, especially when minimizing the pre-
vention impacts on the inference quality of DLIS. First, un-
like existing solutions, there is no cooperation from DLIS
providers. Second, the prevention requires auto adaptation for
each DLIS without the user’s participation. Last, we aim to
prepare an enhancement solution for a DLIS just on a typical
home PC without a powerful GPU.

In this work, we propose GAPter, a user-side privacy
enhancement framework against DLIS providers (Figure 1).
GAPter protects the DLIS input privacy at the user side and
maintains almost the same inference QoS as the original one.
We implement the GAPter and experiment with five repre-
sentative DLISes built from open-source projects. Experi-
ments show that GAPter can achieve a good balance between
data privacy enhancement and the DLIS’s QoS preservation.
Specifically, according to our extensive experiments on facial
privacy, it can protect more than 50% of faces at the expense
of a 7% drop in data utility.

We highlight our work’s contributions as follows:

1. GAPter is the first effort to offer privacy enhancement



Fig. 2: The protected results for YoloV3, and the inference
accuracy of YoloV3 and SSD on the data protected by the
same data protector.

at the user side with little QoS compromise. With it,
users have the freedom and rights to make prevention
decisions.

2. GAPter enables the enhancement via an efficient data
protection mechanism for gray-box DLIS models. This
mechanism removes the DL task-irrelevant information
from the user data through a set of semantic-preserving
protection primitives.

3. We implement the GAPter system and show that for
popular open-sourced DLISes, GAPter can strike a
good balance between the data utility and privacy en-
hancement.

2. GAPter DESIGN

Design Challenges. There are three challenges for GAPter
to produce a data protector in our scenario: Grey-box Model.
The DLIS can only be used to perform inference. Remote
DLIS cannot support back-propagation for user access. Cus-
tomized Protection. As shown in Figure 2, one data protec-
tor may have different impacts on different DLISes’ inference
results. Customizing data protectors for different DLISes is
important to maintain the inference accuracy. Limited Re-
sources. Data protectors should be generated for users with
their limited computation resources, e.g., a CPU-only laptop
at home.

GAPter is a user-side technology, which can addressing
all the above challenges. The key designs of the generation
technology are a set of configurable data protection primitives
and a searching algorithm for primitive parameters and com-
binations. The data protector is a combination of protection
primitives with suitable configurations. We demonstrate the
workflow of the data protector generation in Figure 3.

2.1. Data Protection Primitives

The heart of the produced data protector is a set of semantic-
preserving protection primitives configured with suitable pa-
rameters. Each primitive is a basic data protection operation

Fig. 3: The workflow of GAPter for producing a data protec-
tor.

whose protection granularity is configurable through param-
eters. The protection primitives can maintain the user data’s
utility and remove as much information from the user data as
possible. The data has less information is less likely to be
leaked [2]. GAPter provides two primitives, i.e., filtering and
masking.

The filtering primitive shares a similar idea of the work
PECAM [9]. It is a semantics-preserving image style transfor-
mation with an appropriate privacy-enhancement style. This
primitive can remove the instance-level details and keep the
object’s position and category-level information. The protec-
tion granularity of the filtering primitive is controlled by the
size of the smallest object to protect.

The masking primitive is inspired by the information-
dropping data augmentation technique, i.e., grid mask [10].
Among many information-dropping based techniques, the
gird mask performs better in semantics-retention by pre-
serving the continuous area as much as possible and is not
inclined to delete small objects. The gird mask’s protection
granularity is controlled by the total masked area. There are
two other parameters that affect the protection effect, i.e., the
area of a single mask block and the mask’s mode1.

Note that our design is extensible, and more data protec-
tion primitives can be added easily. For example, users can
add the blurring primitive or the noise-adding primitive to in
the future to enhance the data protection effect.

2.2. Protection Scheme Searching

2.2.1. Optimization Objective.

The ideal data protector can balance the protection effective-
ness and data’s utility. Therefore, we define the usability in-
dex (UI) to measure the DLIS’s inference accuracy on pro-
tected data and the protection index (PI) to measure the pro-
tection effectiveness. Finally, we add the two indices together
as the optimization objective to search the data protector.

Usability Index (UI) is calculated by dividing the DLIS’s
inference accuracy on protected data by that on original data

1There are two modes of the grid mask. The first mode produces square-
like masks. The second mode produces strip-like masks.



(Equation 1).

UI =
mAPIoU=0.5(protect(data))

mAPIoU=0.5(data)
(1)

The mAP (mean Average Precision) is the most commonly-
used metric to measure the prediction precision in object de-
tection scenario [11]. IoU (Intersection over Union) is the ra-
tio of the area of overlap to the union area between the ground
truth and predicted bounding box. mAPIoU=0.5 means that
we calculate mAP with the predicted bounding boxes whose
IoU is larger than 0.5.

Protection Index (PI) is measured by the summation of the
weighted granularity of different protection primitives. Recall
that a larger protection granularity means more information
will be removed from the user data. PI is calculated by PI =
λ×(f+m). The f and m are the granularity control parameters
of the filtering primitive and masking primitive, respectively.
The values of these two parameters range from 0 to 1. λ is
0.5 in our context to scale the PI value to between 0 to 1.
Then we can generate a suitable data protector for the DLIS
by maximizing the value of UI+ PI.

Algorithm 1: Pseudo code to search for optimal
data protector parameters.

Data: The dataset: imgs; the param searching space:
Pspace; And the number of max searching steps:
Smax.

Result: The configuration of the best data protector: pbest
1 begin
2 prt = comb(filtering,masking)
3 p = random sample(Pspace)
4 pbest = p
5 Accmax = 0
6 for i ∈ [0, Smax) do
7 imgsp = prt(p, imgs)
8 PI = compute pi(p)
9 UI = compute ui(imgs, imgsp)

10 Acc = PI + UI
11 p = BO(p, Acc)
12 if Accmax ≤ Acc then
13 Accmax = Acc
14 pbest = p

15 return pbest

2.2.2. Searching Algorithm.

The key step of generating the data protector is configuring
the parameters of the filtering and masking primitives. There
is only a parameter f in the filtering primitive that controls
protection granularity. Besides the parameter m controlling
the masking primitive’s protection granularity, there are two
other parameters s and w to control the area of a single mask
block and the way to mask the user data. Once these param-
eters are determined, GAPter will combine these protection

primitives configured with searched parameters as the final
data protector.

We present the procedure of searching parameters in Al-
gorithm 1. The algorithm inputs several real-world photos,
the parameters’ searching space, and the number of the max
searching times, and outputs the configuration of the best data
protector. GAPter prepares five real-world photos randomly
selected from the COCO [12] dataset to search the data pro-
tector’s configuration. Users can replace the preset data sam-
ples with their photos freely. This is because the searching
algorithm shares the same idea as metamorphic testing to gen-
erate the test oracle.

3. EVALUATION

3.1. Implementation & Settings

Software implementation. We implement the filtering prim-
itive by reproducing the FastPass branch2 and the DataGen
of work PECAM [9]. We implement the masking primitive
through the grid mask algorithm implemented by project [13].
The code to generate the data protector is about 800 lines of
Python code. The shell script to automate the GAPter pipeline
is about 600 LoC.
DLISes to enhance. We evaluate the GAPter with 5 represen-
tative DL models (i.e., ssd-mobilenetV1, ssd-mobilenetV2,
faster-rcnn-inceptionV2, mask-rcnn-inceptionV2, and effi-
cientdetD2) downloaded from the open-sourced community.
The perception modules extracted from these DLISes are
denoted as DLIS1∼DLIS5.
Datasets. COCOface: The subset of COCO val2017 [12]
where the images contain faces prepared through a face detec-
tion algorithm [14]. It consists of 639 images. COCO#

search:
The subset of COCOface used for data protector generation.
The dataset’s size is indicated by #. COCOP

face: The pro-
tected version of COCOface, where images are protected by
the data protector P.
Metrics. We propose two metrics to evaluate the data pro-
tectors. The first is UI (Equation 1), which can be used to
measure how the data protector affects the DLIS’s inference
accuracy. The second is face protection index (FPI), which
can measure the protection effect of data protectors by count-
ing how many faces are protected. As presented in Equa-
tion 2, the FPI is evaluated by performing face matching on
the images before and after protection.

FPI = 1−
∑

(face match(data, protect(data)))∑
(face detect(data))

(2)

We utilize the commonly used face matching algorithm [14]
as the face matching and face detection methods in the fol-
lowing experiments.

2Note that the results transformed by FastPass are not reversible.



Fig. 4: Samples protected by GAPter for different DLISes.

Fig. 5: The effectiveness of the generated data protectors in terms of UI and FPI.

Fig. 6: Sweet points for different DLISes.

3.2. Experimental Results

Overall Protection Effectiveness. We have made a compre-
hensive analysis of protection effectiveness in terms of util-
ity and effectiveness. First, we generate data protectors for
DLIS1∼5 with Algorithm 1. The Smax is set to 200, and the
imgs are the dataset COCO5

search. We generate data protec-
tors for each of the DLISes with its five searched configura-
tions. We evaluate the data protector of each DLIS on the
COCOP

face dataset. and evaluate these protectors in terms of
UI and FPI.

We present the results in Figure 5. It shows that GAPter
can produce data protectors that perform well in balancing
data protection and utility retaining for DLIS1∼5. We also
report sweet points of the data protector in terms of utility and
effectiveness in Figure 6. In our context, the sweet point rep-
resent a data protector for the DLIS that maximizes the value
of UI + PI. Although GAPter produces protectors for differ-
ent DLISes with different sweet points, for different DLISes,
there is a data protector that can protect more than 50% of the
faces at the cost of less than 7% loss of accuracy.
Protected Samples. In Figure 4, we show some samples pro-
tected by different protectors generated for different DLISes.
We also visualize the DLIS’s inference results, i.e., bound-
ing boxes and categories, on the protected data. Recall that
the GAPter prevents data from being abused by removing
DLIS-related information, not just protecting faces. Welcome
to our anonymous website: https://sites.google.

Fig. 7: Time used for each round of data protector generation.

com/view/for-icassp2023-review for more sam-
ples.
System Performance. We measure the performance of data
protector generation with DLIS1∼5 and COCO5

search. The
data protector’s preparation time consists of two parts, i.e.,
configuration searching time and DLIS inference time. We
report the time used for each round in Figure 7. It takes about
7 seconds for GAPter to search for configuration and update
the data protector. The rest time is for DLIS inference on
the laptop. In our experiments, the number of the searching
rounds is 200. So the configuration searching takes about 24
minutes during the data protector generation.

The data protector only takes up 5MB extra storage. It
takes about 50ms to protect the user data on mobile device,
which is a Google Pixel5 in our experiment. The data privacy
enhancement time only takes about 7.5% that of the original
DLIS inference on average.

4. CONCLUSION

In this work, we propose a user-side automatic framework,
GAPter, to enable the user-side data privacy enhancement and
maintain the DLIS’s QoS. We have implemented and experi-
mentally show that the GAPter can find good balance points
between data privacy enhancement and inference accuracy.
GAPter is also a data-driven grey-box automation and paves
a new way to perform non-intrusive DL model fuzzing.

https://sites.google.com/view/for-icassp2023-review
https://sites.google.com/view/for-icassp2023-review


5. REFERENCES

[1] Jonathan Soifer, Jason Li, Mingqin Li, Jeffrey Zhu,
Yingnan Li, Yuxiong He, Elton Zheng, Adi Oltean,
Maya Mosyak, Chris Barnes, Thomas Liu, and Junhua
Wang, “Deep learning inference service at microsoft,”
in USENIX Conference on Operational Machine Learn-
ing. 2019, pp. 15–17, USENIX Association.

[2] Hao Wu, Xuejin Tian, Yuhang Gong, Xing Su, Ming-
hao Li, and Fengyuan Xu, “Dapter: Preventing user
data abuse in deep learning inference services,” in Pro-
ceedings of the Web Conference, 2021.

[3] Proton Technologies AG, “Complete guide to gdpr com-
pliance,” https://gdpr.eu/, 2018.

[4] State of California Department of Justice, “Califor-
nia consumer privacy act (ccpa),” https://oag.ca.
gov/privacy/ccpa, 2018.

[5] Franziska Roesner, David Molnar, Alexander
Moshchuk, Tadayoshi Kohno, and Helen J Wang,
“World-driven access control for continuous sensing,”
in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, 2014.

[6] Jinhan Hu, Andrei Iosifescu, and Robert LiKamWa,
“Lenscap: split-process framework for fine-grained vi-
sual privacy control for augmented reality apps,” in Pro-
ceedings of the 19th Annual International Conference
on Mobile Systems, Applications, and Services, 2021.

[7] Suman Jana, Arvind Narayanan, and Vitaly Shmatikov,
“A scanner darkly: Protecting user privacy from percep-
tual applications,” in 2013 IEEE symposium on security
and privacy, 2013.

[8] Sicong Liu, Junzhao Du, Anshumali Shrivastava, and
Lin Zhong, “Privacy adversarial network: representa-
tion learning for mobile data privacy,” Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiqui-
tous Technologies, 2019.

[9] Hao Wu, Xuejin Tian, Minghao Li, Yunxin Liu, Ganesh
Ananthanarayanan, Fengyuan Xu, and Sheng Zhong,
“Pecam: Privacy-enhanced video streaming and analyt-
ics via securely-reversible transformation,” in Proceed-
ings of the 27th Annual International Conference on
Mobile Computing and Networking (MobiCom), 2021.

[10] Pengguang Chen, Shu Liu, Hengshuang Zhao, and Jiaya
Jia, “Gridmask data augmentation,” 2020.

[11] Rafael Padilla, Sergio L Netto, and Eduardo AB
da Silva, “A survey on performance metrics for object-
detection algorithms,” in International Conference on
Systems, Signals and Image Processing (IWSSIP), 2020.

[12] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick, “Microsoft coco: Common ob-
jects in context,” in European Conference on Computer
Vision (ECCV), 2014.

[13] dvlab research, “Gridmask data augmentation,”
https://github.com/dvlab-research/
GridMask, 2019.

[14] ageitgey, “Face recognition,” https://github.
com/ageitgey/face_recognition, 2017.

https://gdpr.eu/
https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa
https://github.com/dvlab-research/GridMask
https://github.com/dvlab-research/GridMask
https://github.com/ageitgey/face_recognition
https://github.com/ageitgey/face_recognition

	 Introduction
	 GAPter Design
	 Data Protection Primitives
	 Protection Scheme Searching
	 Optimization Objective.
	 Searching Algorithm.


	 Evaluation
	 Implementation & Settings
	 Experimental Results

	 Conclusion
	 References

