
TOWARDS PRACTICAL AND EFFICIENT LONG VIDEO SUMMARY

Xiaopeng Ke, Boyu Chang, Hao Wu *, Fengyuan Xu, Sheng Zhong

State Key Laboratory for Novel Software Technology, Nanjing University, China

ABSTRACT

Recently, video summarization (VS) techniques are widely
used to alleviate huge processing pressure brought by nu-
merous long videos. However, it is hard to summarize long
videos efficiently since processing hundreds of frames is still
time-consuming. In this paper, we find that the Kernel Tem-
poral Segmentation (KTS) method designed for detecting
the shot boundaries in SOTA VS methods is time-consuming
while handling long videos. To address this issue, we propose
the Distribution-based KTS (D-KTS) by fully considering the
characteristic of shot length distribution. Furthermore, we
propose the Hash-based Adaptive Frame Selection (HAFS)
to improve the system performance by fully taking advantage
of the temporal locality of long videos. Our experiments
present that the proposed D-KTS is 92.70% faster and takes
up 90.08% less memory than the baseline KTS method on
average.

Index Terms— Long Video Summary, Optimization,
KTS

1. INTRODUCTION

With the rapid growth of the number of long videos, Video
Summary (VS) techniques have got lots of attention [1, 2, 3,
4, 5, 6, 7, 8, 9]. VS methods can output a subset of frames
in the input video, and those selected frames can represent
the main content of the original video. With the help of the
VS methods, we can convert a long video to a summary for
efficient storage and better post-processing.

As shown in Fig 1, previous SOTA VS methods [1, 2,
10, 11, 12] always follow the common paradigm with two
modules (preprocessing and model inference module). Their
preprocessing modules rely on the Kernel Temporal Segmen-
tation [13, 14] (KTS), which is time-consuming under long
videos (about 68% of the total processing time). The KTS
computes the variances of every interval and applies the dy-
namic programming technique to get the shot boundaries. To
consider every possible interval and obtain precise bound-
aries, the complexity of KTS is O(N2), and it becomes the
bottleneck for processing long videos. To handle a 10-minute
video, it even needs more than 8 hours while using the base-
line KTS method.

* Corresponding Author. Email: hao.wu@nju.edu.cn

Fig. 1: The common paradigm of VS methods. We use DR-
DSN [1] on a 476-second video with the KTS [13] and the
KTS takes 68% of the total processing time.

In this paper, we design two methods to address the above
issue. First, we propose the Distribution-based KTS (D-
KTS) method, which exploits that long-tail distribution and
selects a proper search range to reduce the complexity. To
achieve that optimization, we also present a new dynamic
programming algorithm for transferring the baseline KTS to
D-KTS. Second, we propose Hash-based Adaptive Frame
Selection (HAFS) to pre-process frames and construct an
adaptive frame selection mechanism to further improve the
pre-processing performance in terms of feature extraction.

In this paper, our contributions are summarized as below:

• We discover the performance bottleneck of SOTA VS
methods in the long video scenario, i.e., the baseline
KTS makes it impossible to handle long videos prac-
tically and efficiently since it considers every possible
interval in the video.

• To deal with the issue caused by the baseline KTS, we
propose D-KTS after analyzing the shot length distribu-
tion. To further reduce the cost of the feature extraction,
we propose the Hash-based Adaptive Frame Selection
(HAFS) method to skip some frames and maintain the
performance.

• We implement our two algorithms and perform com-
prehensive experiments on two popular VS datasets
(TVSum [15] and SumMe [16]) with two representa-
tive VS methods (DR-DSN [1] and DSNet [2]). Our
results present that our D-KTS outperforms the base-
line KTS. Compared to the baseline KTS, our D-KTS
is 92.70% faster and saves 90.08% memory.

The rest of this paper is organized as follows. We first de-
scribe the overview of the VS pipeline and introduce our D-
KTS and HAFS in Section 2. In Section 3, we present some



details of our experiments and discuss the corresponding re-
sults. Finally, we make the conclusion at Section 4.

2. METHODOLOGY

2.1. Overview

As is shown in Figure 2, there are five main steps: (1) Hash-
based Adaptive Frame Selection; (2) Feature Extraction; (3)
KTS Processing; (4) Getting Frame Scores by VS methods;
(5) Summary Generation. At the Feature Extraction step, we
apply some popular CNNs (e.g., GoogLeNet [17]) to extract
a feature vector for each frame, and we propose HAFS to ac-
celerate that process. Then we utilize the distribution infor-
mation to reduce the complexity of the KTS and pass those
feature vectors and shot boundaries to VS methods. Finally,
we obtain the frame score and generate the summary.

2.2. Distribution-based KTS

To better describe the algorithm, we first present some no-
tations. Let V = (x1, x2, x3, ..., xn) represents a n-length
video where xi ∈ RW×H×C . W,H,C denote the width,
height and channels of a single frame, respectively. f(·) ∈
Rdim denotes the feature extractor (e.g. The output of the
penultimate layer of GoogLeNet) where dim is the dimen-
sion of the output feature vector. Then we can obtain the fea-
ture vectors of a video as F (V ) = (f(x1), f(x2), ..., f(xn)).
In the baseline KTS method, we have to compute the Gram
matrix of feature vectors. We let K ∈ Rn×n the Gram ma-
trix and kij = g(f(xi), f(xj)) is the element of K where the
function g : Rn × Rn → R is the kernel function.

Our D-KTS method relies on an observation: The length
of shots follows a long tail distribution. As shown in Fig-
ure 3, there is a long tail distribution, and we can model it
by using the F-distribution. In the baseline KTS, we need
to compute the variance of every possible shot. With the
F-distribution, we select an upper bound u ∈ R of the shot
length to reduce the complexity of the baseline KTS (i.e., We
need to compute variances with a sliding window).

In conventional KTS, we need to compute the unnormal-
ized variances like:

vt,t+d =

t+d−1∑
i=t

kii −
1

d

t+d−1∑
i,j=t

kij (1)

where t is the position of the start frame and d is the duration
of the possible segment.

The variance matrix can be easily computed by using the
Gram matrix K (e.g., The sum of kii can be computed by
the diag(K) with the prefix-sum technique.). However, the
Gram matrix K becomes sparse if we apply the upper bound,
and that matrix still takes a lot of memory. We squeeze that
Gram matrix to T (K) ∈ Rn×u to reduce the memory. Fur-
thermore, we propose a triangular calculation to compute the

second term of the variance (i.e. 1
d

∑t+d−1
i,j=t kij). T (K) can

be written as:

T (K) =


k11 k12 k13 ... k1,u
k22 k23 k24 ... k2,u+1

k33 k34 k35 ... k3,u+2

...
...

... ...
...

 (2)

The first column can be utilized for computing the first term
of the variance. To compute the second term, we use the dy-
namic programming in T (K). For example, if we want to
compute the second term of v14,

∑3
i,j=1 kij = k11 + 2k12 +

2k13 + k22 + 2k23 + k33 can be represented by two triangle
t1 = (k11 + 2k12 + k22) and t2 = (k22 + 2k23 + k33) with
the top term p13 = k13 and repeat term k22. Here, we have∑3

i,j=1 kij = t1 + t2 + 2p13 − t1 ∩ t2 where the repeat term
t1∩t2 = k22 is still a small triangle. In the iterations, we com-
pute the triangle from the smallest thus we reduce some repeat
computations. Generally, we let V (t, t+d−1) =

∑t+d−1
i,j=t kij

and the formalization can be written as:

Di,j = Di−1,j +Di−1,j+1 + 2kj,i+j−1 −Di−2,j+1 (3)

where D0,j = 0, D1,j = kjj , i ≥ 2, j ≥ 1. Then we can
utilize the equation V (t, t + d − 1) = Dd,t to compute the
second term as 1

dV (t, t+ d− 1).

2.3. Hash-based Adaptive Frame Selection

In practice, we also observe that the visual similarity of two
intra-shot frames is higher than that of two inter-shot
frames. To reduce the cost of feature extraction, we pro-
pose a hash-based adaptive frame selection method called the
HAFS.

For the first frame, we record its hash vector through the
d-hash [18]. Then, we compute the hash vector for each frame
and make a comparison with the record vector. If the Ham-
ming distance is larger than our threshold, we replace the
record with the current hash vector and extract the feature
vector through the neural network. Otherwise, we repeat the
feature vector of the record frame without making feature ex-
traction on the current frame.

3. EXPERIMENTS

3.1. Datasets and Implementation Details

Dataset. We use SumMe [16] and TVSum [15] datasets for
evaluation. SumMe contains 25 videos on different topics and
the video lengths vary from 1.5 to 6.5 minutes. Each video
has frame-level binary scores annotated by 15 to 18 users.
TVSum contains 50 videos selected from 10 categories (i.e.,
5 videos per category), and the video lengths vary from 1 to
10 minutes. Each video has shot-level importance scores an-
notated by 20 users, and each shot is 2 seconds long.



Fig. 2: The distribution of segment lengths and the overview of the video summary pipeline with our optimizations.

Fig. 3: The distribution of the shot length.

Implementation Details. The experiments are carried
out under python 3.6.13, pytorch 1.4.0, cudatoolkit 10.0.130,
opencv 3.4.2, torchvision 0.5.0. The operating system is
Ubuntu 16.04. Our device has 4 TITAN Xp 12GB GPUs,
Intel(R) Core(TM) i7-6850K CPU @ 3.60GHz, and 126GB
memory.

According to our statistics, the shot length distribution
of the datasets follows the F distribution, in which 95%
of the shot lengths are less than 338 frames as shown in
Figure 3. Hence u is assigned to min(n, 338). The max-
imum change point number m is empirically assigned as
frame-number/106 ∗ 2, where 106 is the modal class of
the shot length distribution. The hyperparameter v for the
penalty term of KTS is assigned to 1 for default. In Hash-
based Adaptive Frame Selection, the threshold t is assigned
to 4 according to statistics.

For DR-DSN [1], we use the default settings for training.
For DSNet [2], we only use the anchor-free version. When the
frame rate reaches 15 fps and 30 fps, the model will become
too large to train on one GPU, and there is no batch design for
the model, so parallel running is infeasible. Hence we use the
linear model among the base models provided.

3.2. Evaluation Metrics

For evaluation and summary video generation, we follow the
scheme in [15, 19]. In order to convert frame-level probability

Table 1: Time and memory consumption of the baseline KTS
and D-KTS

Video Length (s) 60 180 300 420 540

Processing Time (s) Baseline KTS 41.24 1057.81 4800.53 13077.74 28057.54
D-KTS 21.37 193.77 548.12 1052.04 1775.32

Memory (MiB) Baseline KTS 178.75 756.75 1998.13 3902.92 6269.82
D-KTS 120.41 196.26 281.88 350.61 420.28

to shot-level machine summary, the 0/1 knapsack algorithm is
applied to KTS segments, and the summary video is supposed
to be shorter than 15% of the input video. We take the sum-
mary of 30 fps as the ground truth. We also use 5-fold cross-
validation, and the average F-score is utilized as the metric to
compare between the machine summary and the ground truth.

3.3. Performance on Spacetime Consumption and F-
score

Comparison with baseline KTS. In order to verify the effec-
tiveness of D-KTS, comparison experiments are conducted
with the two versions of KTS on randomly generated data of
different lengths. As shown in Table 1, as the video length
increases, the time and memory consumption of the base-
line KTS increases dramatically. On the contrary, the time
and memory consumption of the D-KTS has no significant
increase. On average, our D-KTS is 92.70% faster than the
baseline KTS while saving 90.08% of memory at the same
time.

The F-score of the baseline KTS and D-KTS is reported in
Figure 4. The F-score of the baseline KTS increases steadily
and levels off gradually as the video length increases. While
the F-score of the D-KTS fluctuates around 0.92 and 0.96.
The average F-score of the D-KTS is 95.03% of the base-
line KTS. The optimizations achieve the great improvement
of time and memory consumption successfully.

Based on the D-KTS, video summarization systems are
implemented, and then experiments are conducted on the sys-
tems to explore the influence of different downsampling rates.



Fig. 4: F-score of Baseline KTS and D-KTS

Influence of the Downsampling Rate. We implement
supervised and unsupervised versions of the video summa-
rization system respectively with DSNet [2] and DR-DSN [1]
and analyze the influence of downsampling rates.

Figure 5 shows the F-score of DR-DSN and DSNet on
SumMe and TVSum datasets. Basically, frame rate and F-
score are positively correlated. Downsampling to 2 fps (used
by most related works) has negative impacts on the result.
Compared to no downsampling (30 fps), for the TVSum
dataset, the F-score decreases 20.92% on average; for the
SumMe dataset, the F-score decreases 20.72% on average.

Fig. 5: F-score of DR-DSN and DSNet

Figure 6 depicts the proportion of processing time on
SumMe and TVSum datasets. The feature is extracted by
GoogLeNet-GPU [17]. The time for model inference is very
short compared to the others (within 1 second). As the frame
rate increases, the time for feature extraction and KTS in-
creases as well, while the time for summary video generation
has no obvious change: for SumMe, the time is around 22%;
for TVSum, the time is around 5.6%. Videos in the two
datasets are within 10 minutes, and our proposed method can
process the frame rate up to 15 fps in real-time.

In conclusion, there is a big gap between the F-score of
5 fps and 2 fps, while the processing time of 5 fps is not
much more than that of 2 fps. Therefore, taking both F-score
and processing time into account, down sampling to 5 fps can
achieve a better balance between accuracy and time.

Fig. 6: Proportion of processing time on TVSum & SumMe
dataset

Table 2: Comparison of F-score and average processing time
of a single frame for 5 fps

TVSum SumMe
w/o HAFS w/ HAFS w/o HAFS w/ HAFS

F-score DR-DSN 0.5236 0.5031 0.5016 0.4905
F-score DSNet 0.7393 0.7197 0.5947 0.6043

Feature Extraction (ms) 0.95 1.46 4.15 4.24
KTS (ms) 6.14 0.16 3.62 0.16

KTS + Feature Extraction (ms) 7.09 1.62 7.77 4.39

The gain of the Hash-based Adaptive Frame Selec-
tion. As reported in Table 2, after applying the Hash-based
Adaptive Frame Selection to feature extraction to D-KTS, the
processing time is significantly reduced with a little sacrifice
of F-score. For TVSum and SumMe, the time is respectively
79.66% and 44.27% shorter compared to experiments above.
And the F-score for DR-DSN and DSNet only decreases
3.06% and 1.04% on average for both datasets.

4. CONCLUSION

In this paper, we reveal the performance bottleneck of SOTA
VS methods while processing long videos. With the obser-
vation of the shot length distribution, we propose D-KTS to
reduce the processing time and memory usage. Additionally,
we also propose HAFS to accelerate the whole pipeline. To
evaluate our optimizations, we conduct comprehensive exper-
iments on two widely-used datasets (TVSum and SumMe)
with two popular VS methods (DR-DSN and DSNet). The
experiment results show that our D-KTS and HAFS achieve
faster processing and less memory usage under long videos
with a little sacrifice of accuracy.

5. ACKNOWLEDGEMENTS

We sincerely thank the reviewers for their valuable comments
helping us to improve this work. This work was supported by
National Key Research and Development Program of China
2021YFB3100300, National Natural Science Foundation of
China 61872180, Jiangsu “Shuang-Chuang” Program , and
Jiangsu “Six-Talent-Peaks” Program.



6. REFERENCES

[1] Kaiyang Zhou, Yu Qiao, and Tao Xiang, “Deep rein-
forcement learning for unsupervised video summariza-
tion with diversity-representativeness reward,” in Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, 2018, vol. 32.

[2] Wencheng Zhu, Jiwen Lu, Jiahao Li, and Jie Zhou,
“Dsnet: A flexible detect-to-summarize network for
video summarization,” IEEE Transactions on Image
Processing, vol. 30, pp. 948–962, 2020.

[3] Mohamed Elfeki and Ali Borji, “Video Summarization
via Actionness Ranking,” arXiv:1903.00110 [cs], Feb.
2019.

[4] Sijia Cai, Wangmeng Zuo, Larry S. Davis, and Lei
Zhang, “Weakly-Supervised Video Summarization Us-
ing Variational Encoder-Decoder and Web Prior,” in
Computer Vision – ECCV 2018, Vittorio Ferrari, Mar-
tial Hebert, Cristian Sminchisescu, and Yair Weiss, Eds.,
vol. 11218, pp. 193–210. Springer International Publish-
ing, Cham, 2018.

[5] Mingyang Ma, Shaohui Mei, Shuai Wan, Junhui Hou,
Zhiyong Wang, and David Dagan Feng, “Video sum-
marization via block sparse dictionary selection,” Neu-
rocomputing, vol. 378, pp. 197–209, Feb. 2020.

[6] Li Yuan, Francis Eng Hock Tay, Ping Li, and Ji-
ashi Feng, “Unsupervised Video Summarization With
Cycle-Consistent Adversarial LSTM Networks,” IEEE
Transactions on Multimedia, vol. 22, no. 10, pp. 2711–
2722, Oct. 2020.

[7] Sheng-hua Zhong, Jiaxin Wu, and Jianmin Jiang,
“Video summarization via spatio-temporal deep archi-
tecture,” Neurocomputing, vol. 332, pp. 224–235, Mar.
2019.

[8] Mrigank Rochan, Linwei Ye, and Yang Wang, “Video
Summarization Using Fully Convolutional Sequence
Networks,” in Computer Vision – ECCV 2018, Vitto-
rio Ferrari, Martial Hebert, Cristian Sminchisescu, and
Yair Weiss, Eds., vol. 11216, pp. 358–374. Springer In-
ternational Publishing, Cham, 2018.

[9] Yujia Zhang, Xiaodan Liang, Dingwen Zhang, Min Tan,
and Eric P. Xing, “Unsupervised Object-Level Video
Summarization with Online Motion Auto-Encoder,”
arXiv:1801.00543 [cs], Aug. 2018.

[10] Yujia Zhang, Michael Kampffmeyer, Xiaoguang Zhao,
and Min Tan, “Dtr-gan: Dilated temporal relational ad-
versarial network for video summarization,” in Proceed-
ings of the ACM Turing Celebration Conference-China,
2019, pp. 1–6.

[11] Zhong Ji, Yuxiao Zhao, Yanwei Pang, Xi Li, and Jun-
gong Han, “Deep attentive video summarization with
distribution consistency learning,” IEEE transactions
on neural networks and learning systems, vol. 32, no. 4,
pp. 1765–1775, 2020.

[12] Evlampios Apostolidis, Georgios Balaouras, Vasileios
Mezaris, and Ioannis Patras, “Combining global and
local attention with positional encoding for video sum-
marization,” in 2021 IEEE International Symposium on
Multimedia (ISM), December 2021, pp. 226–234.

[13] Danila Potapov, Matthijs Douze, Zaid Harchaoui, and
Cordelia Schmid, “Category-Specific Video Summa-
rization,” in Computer Vision – ECCV 2014, David
Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuyte-
laars, Eds., vol. 8694, pp. 540–555. Springer Interna-
tional Publishing, Cham, 2014.

[14] Zhuo Lei, Ke Sun, Qian Zhang, and Guoping Qiu, “User
video summarization based on joint visual and semantic
affinity graph,” in Proceedings of the 2016 ACM Work-
shop on Vision and Language Integration Meets Mul-
timedia Fusion, New York, NY, USA, 2016, p. 45–52,
Association for Computing Machinery.

[15] Yale Song, Jordi Vallmitjana, Amanda Stent, and Ale-
jandro Jaimes, “Tvsum: Summarizing web videos using
titles,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2015, pp. 5179–
5187.

[16] Michael Gygli, Helmut Grabner, Hayko Riemenschnei-
der, and Luc Van Gool, “Creating summaries from user
videos,” in European conference on computer vision.
Springer, 2014, pp. 505–520.

[17] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, and Andrew Rabinovich, “Going
deeper with convolutions,” in Proceedings of the IEEE
conference on computer vision and pattern recognition,
2015, pp. 1–9.

[18] Hacker Factor, “The hacker factor blog,” January 2013,
http://www.hackerfactor.com/blog/?/
archives/529-Kind-of-Like-That.html.

[19] Ke Zhang, Wei-Lun Chao, Fei Sha, and Kristen Grau-
man, “Video summarization with long short-term mem-
ory,” in European conference on computer vision.
Springer, 2016, pp. 766–782.


